A tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers. Statistical-dynamical models use aspects of both types of forecasting. Four primary types of forecasts exist for tropical cyclones: track, intensity, storm surge, and rainfall. Dynamical models were not developed until the 1970s and the 1980s, with earlier efforts focused on the storm surge problem.
Track models did not show forecast skill when compared to statistical models until the 1980s. Statistical-dynamical models were used from the 1970s into the 1990s. Early models use data from previous model runs while late models produce output after the official hurricane forecast has been sent. The use of consensus, ensemble, and superensemble forecasts lowers errors more than any individual forecast model. Both consensus and superensemble forecasts can use the guidance of global and regional models runs to improve the performance more than any of their respective components. Techniques used at the Joint Typhoon Warning Center indicate that superensemble forecasts are a very powerful tool for track forecasting.
The first statistical guidance used by the National Hurricane Center was the Hurricane Analog Technique (HURRAN), which was available in 1969. It used the newly developed North Atlantic tropical cyclone database to find storms with similar tracks. It then shifted their tracks through the storm's current path, and used location, direction and speed of motion, and the date to find suitable analogs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Production management deals with producing goods sustainably at the right time, quantity, and quality with the minimum cost. This course equips students with practical skills and tools for effectively
The program of the School aims al providing the students with the main concepts and methodologies for developing a numerical model of superconducting devices. The students will learn numerical modelli
In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes (clouds and precipitation), heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion.
Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
Sea surface temperature (SST), or ocean surface temperature, is the ocean temperature close to the surface. The exact meaning of surface varies according to the measurement method used, but it is between and below the sea surface. Air masses in the Earth's atmosphere are highly modified by sea surface temperatures within a short distance of the shore. Localized areas of heavy snow can form in bands downwind of warm water bodies within an otherwise cold air mass.
Explores maximum solutions and their applications in modeling population growth, economic scenarios, and climate, with a focus on exponential growth interpretation and tropical days prediction.
Covers deterministic and stochastic rainfall models in water resources engineering, including generation, calibration, and spatially explicit models.
Explores energy demand, supply, cost, security, and supply chain components, analyzing market influences and economic factors.
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
2024
Anthropogenic modification of natural landscapes to urban environments impacts land-atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but c ...
Building on prior analysis of ASDEX Upgrade (AUG) experiments (Henderson et al 2023 Nucl. Fusion 63 086024), this study compares simple analytical formula predictions for divertor detachment onset and reattachment timescales in JET experiments. Detachment ...