Concept

Tropical cyclone forecast model

Summary
A tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers. Statistical-dynamical models use aspects of both types of forecasting. Four primary types of forecasts exist for tropical cyclones: track, intensity, storm surge, and rainfall. Dynamical models were not developed until the 1970s and the 1980s, with earlier efforts focused on the storm surge problem. Track models did not show forecast skill when compared to statistical models until the 1980s. Statistical-dynamical models were used from the 1970s into the 1990s. Early models use data from previous model runs while late models produce output after the official hurricane forecast has been sent. The use of consensus, ensemble, and superensemble forecasts lowers errors more than any individual forecast model. Both consensus and superensemble forecasts can use the guidance of global and regional models runs to improve the performance more than any of their respective components. Techniques used at the Joint Typhoon Warning Center indicate that superensemble forecasts are a very powerful tool for track forecasting. The first statistical guidance used by the National Hurricane Center was the Hurricane Analog Technique (HURRAN), which was available in 1969. It used the newly developed North Atlantic tropical cyclone database to find storms with similar tracks. It then shifted their tracks through the storm's current path, and used location, direction and speed of motion, and the date to find suitable analogs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.