A tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers. Statistical-dynamical models use aspects of both types of forecasting. Four primary types of forecasts exist for tropical cyclones: track, intensity, storm surge, and rainfall. Dynamical models were not developed until the 1970s and the 1980s, with earlier efforts focused on the storm surge problem.
Track models did not show forecast skill when compared to statistical models until the 1980s. Statistical-dynamical models were used from the 1970s into the 1990s. Early models use data from previous model runs while late models produce output after the official hurricane forecast has been sent. The use of consensus, ensemble, and superensemble forecasts lowers errors more than any individual forecast model. Both consensus and superensemble forecasts can use the guidance of global and regional models runs to improve the performance more than any of their respective components. Techniques used at the Joint Typhoon Warning Center indicate that superensemble forecasts are a very powerful tool for track forecasting.
The first statistical guidance used by the National Hurricane Center was the Hurricane Analog Technique (HURRAN), which was available in 1969. It used the newly developed North Atlantic tropical cyclone database to find storms with similar tracks. It then shifted their tracks through the storm's current path, and used location, direction and speed of motion, and the date to find suitable analogs.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation, moist processes (clouds and precipitation), heat exchange, soil, vegetation, surface water, the kinematic effects of terrain, and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion.
La prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
La température de surface de la mer est la température dans une couche plus ou moins importante près de la surface de la mer qui peut varier selon la méthode de mesure. C'est au niveau de cette couche que se produisent les interactions entre l'océan et l'atmosphère qui gouvernent le climat et cette température est donc critique sur le développement des systèmes météorologiques. Elle l'est également sur le type et la quantité d'organismes vivants dans les profondeurs de la mer.
Production management deals with producing goods sustainably at the right time, quantity, and quality with the minimum cost. This course equips students with practical skills and tools for effectively
The program of the School aims al providing the students with the main concepts and methodologies for developing a numerical model of superconducting devices. The students will learn numerical modelli
Explore les solutions maximales et leurs applications pour modéliser la croissance démographique, les scénarios économiques et le climat, en mettant l'accent sur l'interprétation exponentielle de la croissance et la prévision des jours tropicaux.
Couvre les modèles de précipitations déterministes et stochastiques dans l'ingénierie des ressources en eau, y compris la génération, l'étalonnage et des modèles spatialement explicites.
Explore la demande d'énergie, l'offre, les coûts, la sécurité et les composants de la chaîne d'approvisionnement, en analysant les influences du marché et les facteurs économiques.
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
2024
Anthropogenic modification of natural landscapes to urban environments impacts land-atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but c ...
Building on prior analysis of ASDEX Upgrade (AUG) experiments (Henderson et al 2023 Nucl. Fusion 63 086024), this study compares simple analytical formula predictions for divertor detachment onset and reattachment timescales in JET experiments. Detachment ...