In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics, where W is work, U is internal energy, and Q is heat. Pressure-volume work by the closed system is defined as: where Δ means change over the whole process, whereas d denotes a differential. Since pressure is constant, this means that Applying the ideal gas law, this becomes with R representing the gas constant, and n representing the amount of substance, which is assumed to remain constant (e.g., there is no phase transition during a chemical reaction). According to the equipartition theorem, the change in internal energy is related to the temperature of the system by where cV, m is molar heat capacity at a constant volume. Substituting the last two equations into the first equation produces: where cP is molar heat capacity at a constant pressure. To find the molar specific heat capacity of the gas involved, the following equations apply for any general gas that is calorically perfect. The property γ is either called the adiabatic index or the heat capacity ratio. Some published sources might use k instead of γ. Molar isochoric specific heat: Molar isobaric specific heat: The values for γ are γ = 7/5 for diatomic gases like air and its major components, and γ = 5/3 for monatomic gases like the noble gases. The formulas for specific heats would reduce in these special cases: Monatomic: and Diatomic: and An isobaric process is shown on a P–V diagram as a straight horizontal line, connecting the initial and final thermostatic states. If the process moves towards the right, then it is an expansion. If the process moves towards the left, then it is a compression. The motivation for the specific sign conventions of thermodynamics comes from early development of heat engines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
ChE-201: Introduction to chemical engineering
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Show more
Related lectures (29)
Thermodynamics and Energetics I
Explores fundamental thermodynamics concepts, laws, energy transfer, and system analysis.
Applications of the First Law of Thermodynamics
Explores the rules for calculating different types of ideal gas transformations.
Thermodynamic Processes
Covers the analysis of thermodynamic processes involving bromine vapor and energy balances.
Show more
Related publications (18)

Hydrogen production on demand by redox-mediated electrocatalysis: A kinetic study

Hubert Girault, Sunny Isaïe Maye, Danick Reynard

Producing hydrogen from water using a redox mediator on solid electrocatalyst particles in a reactor offers several advantages over classical electrolysis in terms of safety, membrane degradation, purity and flexibility. Herein, vanadium-mediated hydrogen ...
ELSEVIER SCIENCE SA2021

Visualization of supercritical water pseudo-boiling at Widom line crossover

Christian Ludwig, Andrea Testino

Supercritical water is a green solvent used in many technological applications including materials synthesis, nuclear engineering, bioenergy, or waste treatment and it occurs in nature. Despite its relevance in natural systems and technical applications, t ...
2019

Predicting homogeneous nucleation rate from atomistic simulations

Bingqing Cheng

Predictive modelling and quantitative understanding of nucleation is essential for predicting phase transformation processes in nature and precisely controlling material synthesis and processing. Atomistic modeling is a powerful tool for capturing the dyna ...
EPFL2019
Show more
Related people (1)
Related concepts (16)
Thermodynamic process
Classical thermodynamics considers three main kinds of thermodynamic process: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1)A Thermodynamic process is a process in which the thermodynamic state of a system is changed. A change in a system is defined by a passage from an initial to a final state of thermodynamic equilibrium. In classical thermodynamics, the actual course of the process is not the primary concern, and often is ignored.
Isothermal process
In thermodynamics, an isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0.This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium). In contrast, an adiabatic process is where a system exchanges no heat with its surroundings (Q = 0).
Isochoric process
In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric process is exemplified by the heating or the cooling of the contents of a sealed, inelastic container: The thermodynamic process is the addition or removal of heat; the isolation of the contents of the container establishes the closed system; and the inability of the container to deform imposes the constant-volume condition.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.