In thermodynamics, an isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0.This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium). In contrast, an adiabatic process is where a system exchanges no heat with its surroundings (Q = 0).
Simply, we can say that in an isothermal process
For ideal gases only, internal energy
while in adiabatic processes:
The adjective "isothermal" is derived from the Greek words "ἴσος" ("isos") meaning "equal" and "θέρμη" ("therme") meaning "heat".
Isothermal processes can occur in any kind of system that has some means of regulating the temperature, including highly structured machines, and even living cells. Some parts of the cycles of some heat engines are carried out isothermally (for example, in the Carnot cycle). In the thermodynamic analysis of chemical reactions, it is usual to first analyze what happens under isothermal conditions and then consider the effect of temperature. Phase changes, such as melting or evaporation, are also isothermal processes when, as is usually the case, they occur at constant pressure. Isothermal processes are often used as a starting point in analyzing more complex, non-isothermal processes.
Isothermal processes are of special interest for ideal gases. This is a consequence of Joule's second law which states that the internal energy of a fixed amount of an ideal gas depends only on its temperature. Thus, in an isothermal process the internal energy of an ideal gas is constant. This is a result of the fact that in an ideal gas there are no intermolecular forces. Note that this is true only for ideal gases; the internal energy depends on pressure as well as on temperature for liquids, solids, and real gases.
In the isothermal compression of a gas there is work done on the system to decrease the volume and increase the pressure.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an engineer. The ideal Otto and Diesel cycles are not totally reversible because they involve heat transfer through a finite temperature difference during the irreversible isochoric/isobaric heat-addition and heat-rejection processes.
Classical thermodynamics considers three main kinds of thermodynamic process: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1)A Thermodynamic process is a process in which the thermodynamic state of a system is changed. A change in a system is defined by a passage from an initial to a final state of thermodynamic equilibrium. In classical thermodynamics, the actual course of the process is not the primary concern, and often is ignored.
In information theory and statistics, negentropy is used as a measure of distance to normality. The concept and phrase "negative entropy" was introduced by Erwin Schrödinger in his 1944 popular-science book What is Life? Later, Léon Brillouin shortened the phrase to negentropy. In 1974, Albert Szent-Györgyi proposed replacing the term negentropy with syntropy. That term may have originated in the 1940s with the Italian mathematician Luigi Fantappiè, who tried to construct a unified theory of biology and physics.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Out-of-equilibrium systems continuously generate entropy, with its rate of production being a fingerprint of nonequilibrium conditions. In small-scale dissipative systems subject to thermal noise, fluctuations of entropy production are significant. Hithert ...
AMER PHYSICAL SOC2023
The cellular protein levels are determined by protein synthesis and turnover rates. Two processes are involved in the proteome's turnover in proliferating cells: protein degradation and dilution. In theory, maintaining the cellular proteome concentration, ...
EPFL2023
, ,
The black liquor gasification integrated to chemical plants has shown potential for reducing the process irreversibility and promoting the decarbonization of this industrial sector. In the integrated chemical plants proposed in this work, the purpose is co ...