H-alpha (Hα) is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level. H-alpha has applications in astronomy where its emission can be observed from emission nebulae and from features in the Sun's atmosphere, including solar prominences and the chromosphere.
According to the Bohr model of the atom, electrons exist in quantized energy levels surrounding the atom's nucleus. These energy levels are described by the principal quantum number n = 1, 2, 3, ... . Electrons may only exist in these states, and may only transit between these states.
The set of transitions from n ≥ 3 to n = 2 is called the Balmer series and its members are named sequentially by Greek letters:
n = 3 to n = 2 is called Balmer-alpha or H-alpha,
n = 4 to n = 2 is called Balmer-beta or H-beta,
n = 5 to n = 2 is called Balmer-gamma or H-gamma, etc.
For the Lyman series the naming convention is:
n = 2 to n = 1 is called Lyman-alpha,
n = 3 to n = 1 is called Lyman-beta, etc.
H-alpha has a wavelength of 656.281 nm, is visible in the red part of the electromagnetic spectrum, and is the easiest way for astronomers to trace the ionized hydrogen content of gas clouds. Since it takes nearly as much energy to excite the hydrogen atom's electron from n = 1 to n = 3 (12.1 eV, via the Rydberg formula) as it does to ionize the hydrogen atom (13.6 eV), ionization is far more probable than excitation to the n = 3 level. After ionization, the electron and proton recombine to form a new hydrogen atom. In the new atom, the electron may begin in any energy level, and subsequently cascades to the ground state (n = 1), emitting photons with each transition. Approximately half the time, this cascade will include the n = 3 to n = 2 transition and the atom will emit H-alpha light. Therefore, the H-alpha line occurs where hydrogen is being ionized.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885. The visible spectrum of light from hydrogen displays four wavelengths, 410 nm, 434 nm, 486 nm, and 656 nm, that correspond to emissions of photons by electrons in excited states transitioning to the quantum level described by the principal quantum number n equals 2.
An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission nebulae are H II regions, in which star formation is taking place and young, massive stars are the source of the ionizing photons; and planetary nebulae, in which a dying star has thrown off its outer layers, with the exposed hot core then ionizing them.
The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.
Discusses hydrogen's role in the future energy mix, key drivers of energy transition, challenges in modeling domestic energy demand, and integration of energy models.
Plasma-molecular interactions generate molecular ions which react with the plasma and contribute to detachment through molecular activated recombination (MAR), reducing the ion target flux, and molecular activated dissociation (MAD), both of which create e ...
IOP Publishing Ltd2023
Electron cyclotron wall condition (ECWC) discharges are characterised in ASDEX Upgrade with full tungsten plasma facing components and X2 polarised waves launched from the equatorial ports, relevant to ECWC conditions in ITER Pre-Fusion Power Operation pha ...
IOP Publishing Ltd2023
, ,
Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H-2 molecule, while each large cage can be occupied by up to f ...