The Balmer series, or Balmer lines in atomic physics, is one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885.
The visible spectrum of light from hydrogen displays four wavelengths, 410 nm, 434 nm, 486 nm, and 656 nm, that correspond to emissions of photons by electrons in excited states transitioning to the quantum level described by the principal quantum number n equals 2. There are several prominent ultraviolet Balmer lines with wavelengths shorter than 400 nm. The number of these lines is an infinite continuum as it approaches a limit of 364.5 nm in the ultraviolet.
After Balmer's discovery, five other hydrogen spectral series were discovered, corresponding to electrons transitioning to values of n other than two .
The Balmer series is characterized by the electron transitioning from n ≥ 3 to n = 2, where n refers to the radial quantum number or principal quantum number of the electron. The transitions are named sequentially by Greek letter: n = 3 to n = 2 is called H-α, 4 to 2 is H-β, 5 to 2 is H-γ, and 6 to 2 is H-δ. As the first spectral lines associated with this series are located in the visible part of the electromagnetic spectrum, these lines are historically referred to as "H-alpha", "H-beta", "H-gamma", and so on, where H is the element hydrogen.
{| class="wikitable"
! Transition of n
|align="center"|3→2
|align="center"|4→2
|align="center"|5→2
|align="center"|6→2
|align="center"|7→2
|align="center"|8→2
|align="center"|9→2
|align="center"|∞→2
|-
! Name
|align="center"|H-α / Ba-α
|align="center"|H-β / Ba-β
|align="center"|H-γ / Ba-γ
|align="center"|H-δ / Ba-δ
|align="center"|H-ε / Ba-ε
|align="center"|H-ζ / Ba-ζ
|align="center"|H-η / Ba-η
|align="center"|Balmer break
|-
! Wavelength (nm, air)
|align="center"|656.279
|align="center"|486.135
|align="center"|434.0472
|align="center"|410.1734
|align="center"|397.0075
|align="center"|388.9064
|align="center"|383.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts.
In physics and optics, the Fraunhofer lines are a set of spectral absorption lines named after the German physicist Joseph von Fraunhofer (1787–1826). The lines were originally observed as dark features (absorption lines) in the optical spectrum of the Sun (white light) . In 1802, the English chemist William Hyde Wollaston was the first person to note the appearance of a number of dark features in the solar spectrum. In 1814, Fraunhofer independently rediscovered the lines and began to systematically study and measure the wavelengths where these features are observed.
H-alpha (Hα) is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level. H-alpha has applications in astronomy where its emission can be observed from emission nebulae and from features in the Sun's atmosphere, including solar prominences and the chromosphere.
Explores the Event Horizon Telescope, cosmic microwave background, quasar absorption, and radio astronomy specifics.
Discusses hydrogen's role in the future energy mix, key drivers of energy transition, challenges in modeling domestic energy demand, and integration of energy models.
Explores the evolution of atomic theory, from indivisible particles to the quantum mechanical model of the atom, including the dual nature of electrons and the periodic table.
Electron cyclotron wall condition (ECWC) discharges are characterised in ASDEX Upgrade with full tungsten plasma facing components and X2 polarised waves launched from the equatorial ports, relevant to ECWC conditions in ITER Pre-Fusion Power Operation pha ...
IOP Publishing Ltd2023
, ,
Millions of quasar spectra will be collected by the Dark Energy Spectroscopic Instrument (DESI), leading to a fourfold increase in the number of known quasars. High-accuracy quasar classification is essential to tighten constraints on cosmological paramete ...
IOP Publishing Ltd2023
We use James Webb Space Telescope Near-Infrared Camera Wide Field Slitless Spectroscopy (NIRCam WFSS) and the Near-Infrared spectrograph (NIRSpec) in the Cosmic Evolution Early Release survey to measure rest-frame optical emission-line ratios of 155 galaxi ...