A Wallace multiplier is a hardware implementation of a binary multiplier, a digital circuit that multiplies two integers. It uses a selection of full and half adders (the Wallace tree or Wallace reduction) to sum partial products in stages until two numbers are left. Wallace multipliers reduce as much as possible on each layer, whereas Dadda multipliers try to minimize the required number of gates by postponing the reduction to the upper layers.
Wallace multipliers were devised by the Australian computer scientist Chris Wallace in 1964.
The Wallace tree has three steps:
Multiply each bit of one of the arguments, by each bit of the other.
Reduce the number of partial products to two by layers of full and half adders.
Group the wires in two numbers, and add them with a conventional adder.
Compared to naively adding partial products with regular adders, the benefit of the Wallace tree is its faster speed. It has reduction layers, but each layer has only propagation delay. A naive addition of partial products would require time.
As making the partial products is and the final addition is , the total multiplication is , not much slower than addition. From a complexity theoretic perspective, the Wallace tree algorithm puts multiplication in the class NC1.
The downside of the Wallace tree, compared to naive addition of partial products, is its much higher gate count.
These computations only consider gate delays and don't deal with wire delays, which can also be very substantial.
The Wallace tree can be also represented by a tree of 3/2 or 4/2 adders.
It is sometimes combined with Booth encoding.
The Wallace tree is a variant of long multiplication. The first step is to multiply each digit (each bit) of one factor by each digit of the other. Each of this partial products has weight equal to the product of its factors. The final product is calculated by the weighted sum of all these partial products.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this project-based course, students collect hands-on experience with designing full-custom digital VLSI circuits in dynamic logic. They learn to carry out the design and optimization on transistor
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
A binary multiplier is an electronic circuit used in digital electronics, such as a computer, to multiply two binary numbers. A variety of techniques can be used to implement a digital multiplier. Most techniques involve computing the set of partial products, which are then summed together using binary adders. This process is similar to long multiplication, except that it uses a base-2 (binary) numeral system. Between 1947 and 1949 Arthur Alec Robinson worked for English Electric Ltd, as a student apprentice, and then as a development engineer.
Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the multiplicand, as the quantity of the other one, the multiplier; both numbers can be referred to as factors.
Covers the design of datapath subsystems, focusing on basic combinational components and various implementation options for adders, multipliers, and shifters.
To design faster and more energy-efficient systems, numerous inexact arithmetic operators have been proposed, generally obtained by modifying the logic structure of conventional circuits. However, as the quality of service of an application has to be ensur ...
PERGAMON-ELSEVIER SCIENCE LTD2019
, , ,
Emerging technologies such as plasmonics and photonics are promising alternatives to CMOS for high throughput applications, thanks to their waveguide's low power consumption and high speed of computation. Besides these qualities, these novel technologies a ...
Emerging technologies such as plasmonics and photonics are promising alternatives to CMOS for high throughput applications, thanks to their waveguide's low power consumption and high speed of computation. Besides these qualities, these novel technologies a ...