Summary
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. In general, it depends upon the frequency of the sinusoidal voltage. Impedance extends the concept of resistance to alternating current (AC) circuits, and possesses both magnitude and phase, unlike resistance, which has only magnitude. Impedance can be represented as a complex number, with the same units as resistance, for which the SI unit is the ohm (Ω). Its symbol is usually Z, and it may be represented by writing its magnitude and phase in the polar form Z∠θ. However, Cartesian complex number representation is often more powerful for circuit analysis purposes. The notion of impedance is useful for performing AC analysis of electrical networks, because it allows relating sinusoidal voltages and currents by a simple linear law. In multiple port networks, the two-terminal definition of impedance is inadequate, but the complex voltages at the ports and the currents flowing through them are still linearly related by the impedance matrix. The reciprocal of impedance is admittance, whose SI unit is the siemens, formerly called mho. Instruments used to measure the electrical impedance are called impedance analyzers. Perhaps the earliest use of complex numbers in circuit analysis was by Johann Victor Wietlisbach in 1879 in analysing the Maxwell bridge. Wietlisbach avoided using differential equations by expressing AC currents and voltages as exponential functions with imaginary exponents (see ). Wietlisbach found the required voltage was given by multiplying the current by a complex number (impedance), although he did not identify this as a general parameter in its own right. The term impedance was coined by Oliver Heaviside in July 1886.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.