Barnard's Star is a small red dwarf star in the constellation of Ophiuchus. At a distance of from Earth, it is the fourth-nearest-known individual star to the Sun after the three components of the Alpha Centauri system, and the closest star in the northern celestial hemisphere. Its stellar mass is about 16% of the Sun's, and it has 19% of the Sun's diameter. Despite its proximity, the star has a dim apparent visual magnitude of +9.5 and is invisible to the unaided eye; it is much brighter in the infrared than in visible light.
The star is named after E. E. Barnard, an American astronomer who in 1916 measured its proper motion as 10.3 arcseconds per year relative to the Sun, the highest known for any star. The star had previously appeared on Harvard University photographic plates in 1888 and 1890.
Barnard's Star is among the most studied red dwarfs because of its proximity and favorable location for observation near the celestial equator. Historically, research on Barnard's Star has focused on measuring its stellar characteristics, its astrometry, and also refining the limits of possible extrasolar planets. Although Barnard's Star is ancient, it still experiences stellar flare events, one being observed in 1998.
Barnard's Star has been subject to multiple claims of planets that were later disproven. From the early 1960s to the early 1970s, Peter van de Kamp argued that planets orbited Barnard's Star. His specific claims of large gas giants were refuted in the mid-1970s after much debate. In November 2018, a candidate super-Earth planetary companion known as Barnard's Star b was reported to orbit Barnard's Star. It was believed to have a minimum mass of and orbit at 0.4AU. However, work presented in July 2021 refuted the existence of this planet.
In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalogue and standardize proper names for stars. The WGSN approved the name Barnard's Star for this star on 1 February 2017 and it is now included in the List of IAU-approved Star Names.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain environments hospitable to life. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.
Proper motion is the astrometric measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system (of a given epoch, often J2000.0) are given in the direction of right ascension (μα) and of declination (μδ). Their combined value is computed as the total proper motion (μ).
Proxima Centauri is a small, low-mass star located away from the Sun in the southern constellation of Centaurus. Its Latin name means the 'nearest [star] of Centaurus'. It was discovered in 1915 by Robert Innes and is the nearest-known star to the Sun. With a quiescent apparent magnitude of 11.13, it is too faint to be seen with the unaided eye. Proxima Centauri is a member of the Alpha Centauri star system, being identified as component Alpha Centauri C, and is 2.18° to the southwest of the Alpha Centauri AB pair.
We analyze rest-frame ultraviolet to optical spectra of three z similar or equal to 7.47-7.75 galaxies whose Ly alpha emission lines were previously detected with Keck/MOSFIRE observations, using the JWST/NIRSpec observations from the Cosmic Evolution Earl ...
We report the discovery of 15 exceptionally luminous 10 less than or similar to z less than or similar to 14 candidate galaxies discovered in the first 0.28 deg(2) of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitud ...
We combine deep imaging data from the CEERS early release JWST survey and Hubble Space Telescope imaging from CANDELS to examine the size-mass relation of star-forming galaxies and the morphology-quenching relation at stellar masses M-star >= 10(9.5)M(circ ...