Christiaan Huygens, Lord of Zeelhem, (ˈhaɪɡənz , USˈhɔɪɡənz , ˈkrɪstijaːn ˈɦœyɣə(n)s; also spelled Huyghens; Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution. In physics, Huygens made seminal contributions to optics and mechanics, while as an astronomer he studied the rings of Saturn and discovered its largest moon, Titan. As an engineer and inventor, he improved the design of telescopes and invented the pendulum clock, the most accurate timekeeper for almost 300 years. A talented mathematician and physicist, his works contain the first idealization of a physical problem by a set of mathematical parameters, and the first mathematical and mechanistic explanation of an unobservable physical phenomenon. Huygens first identified the correct laws of elastic collision in his work De Motu Corporum ex Percussione, completed in 1656 but published posthumously in 1703. In 1659, Huygens derived geometrically the formula in classical mechanics for the centrifugal force in his work De vi Centrifuga, a decade before Newton. In optics, he is best known for his wave theory of light, which he described in his Traité de la Lumière (1690). His theory of light was initially rejected in favour of Newton's corpuscular theory of light, until Augustin-Jean Fresnel adopted Huygens's principle to give a complete explanation of the rectilinear propagation and diffraction effects of light in 1821. Today this principle is known as the Huygens–Fresnel principle. Huygens invented the pendulum clock in 1657, which he patented the same year. His horological research resulted in an extensive analysis of the pendulum in Horologium Oscillatorium (1673), regarded as one of the most important 17th century works on mechanics. While it contains descriptions of clock designs, most of the book is an analysis of pendular motion and a theory of curves. In 1655, Huygens began grinding lenses with his brother Constantijn to build refracting telescopes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
HUM-402: Experimental history of science I
The course allows students to learn by doing about the history of science, and the role played by experimentation, technical skills or material objects in the production of knowledge. Students will ex
PHYS-317: Optics I
L'optique est un vieux domaine qui touche à beaucoup de sujets modernes, des techniques expérimentales aux applications courantes. Ce premier cours traite plusieurs aspects de base de l'optique: propa
ME-716: Similarity and Transport Phenomena in Fluid
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
Related lectures (30)
Interference and diffraction
Explores electromagnetic wave properties, wave interference, and diffraction phenomena in light.
Fourier Optics: Wavefront Analysis
Explores Fourier optics, diffraction principles, Fourier analysis, and the application of Fourier transform in optics.
Electromagnetic Waves: Superposition and Interference
Explores the radiation field of an oscillating dipole, interference patterns, and energy redistribution through interference.
Show more
Related publications (24)
Related people (1)
Related concepts (53)
Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei (ˌɡælᵻˈleɪoʊ_ˌɡælᵻˈleɪ , USalsoˌɡælᵻˈliːoʊ_- , ɡaliˈlɛːo ɡaliˈlɛi) or simply Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a polymath. He was born in the city of Pisa, then part of the Duchy of Florence. Galileo has been called the father of observational astronomy, modern-era classical physics, the scientific method, and modern science.
Cycloid
In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve. The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does not depend on the object's starting position (the tautochrone curve).
Catenary
In physics and geometry, a catenary (USˈkætənɛri, UKkəˈtiːnəri) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, superficially similar in appearance to a parabola, which it is not. The curve appears in the design of certain types of arches and as a cross section of the catenoid—the shape assumed by a soap film bounded by two parallel circular rings.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.