Summary
In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve. The cycloid, with the cusps pointing upward, is the curve of fastest descent under uniform gravity (the brachistochrone curve). It is also the form of a curve for which the period of an object in simple harmonic motion (rolling up and down repetitively) along the curve does not depend on the object's starting position (the tautochrone curve). In physics, when a charged particle at rest is put under a uniform electric and magnetic field perpendicular to one another, the particle’s trajectory draws out a cycloid. The cycloid has been called "The Helen of Geometers" as, like Helen of Troy, it caused frequent quarrels among 17th-century mathematicians, while Sarah Hart sees it named as such "because the properties of this curve are so beautiful". Historians of mathematics have proposed several candidates for the discoverer of the cycloid. Mathematical historian Paul Tannery speculated that such a simple curve must have been known to the ancients, citing similar work by Carpus of Antioch described by Iamblichus. English mathematician John Wallis writing in 1679 attributed the discovery to Nicholas of Cusa, but subsequent scholarship indicates that either Wallis was mistaken or the evidence he used is now lost. Galileo Galilei's name was put forward at the end of the 19th century and at least one author reports credit being given to Marin Mersenne. Beginning with the work of Moritz Cantor and Siegmund Günther, scholars now assign priority to French mathematician Charles de Bovelles based on his description of the cycloid in his Introductio in geometriam, published in 1503. In this work, Bovelles mistakes the arch traced by a rolling wheel as part of a larger circle with a radius 120% larger than the smaller wheel. Galileo originated the term cycloid and was the first to make a serious study of the curve.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (4)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
PHYS-101(a): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Show more
Related publications (5)
Related concepts (21)
Christiaan Huygens
Christiaan Huygens, Lord of Zeelhem, (ˈhaɪɡənz , USˈhɔɪɡənz , ˈkrɪstijaːn ˈɦœyɣə(n)s; also spelled Huyghens; Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor who is regarded as a key figure in the Scientific Revolution. In physics, Huygens made seminal contributions to optics and mechanics, while as an astronomer he studied the rings of Saturn and discovered its largest moon, Titan.
Hypocycloid
In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle. As the radius of the larger circle is increased, the hypocycloid becomes more like the cycloid created by rolling a circle on a line. The 2-cusped hypocycloid called Tusi couple was first described by the 13th-century Persian astronomer and mathematician Nasir al-Din al-Tusi in Tahrir al-Majisti (Commentary on the Almagest).
John Wallis
John Wallis (ˈwɒlɪs; Wallisius; - ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the royal court. He is credited with introducing the symbol ∞ to represent the concept of infinity. He similarly used 1/∞ for an infinitesimal. John Wallis was a contemporary of Newton and one of the greatest intellectuals of the early renaissance of mathematics. Cambridge, M.
Show more