Concept

Fehling's solution

Summary
In organic chemistry, Fehling's solution is a chemical reagent used to differentiate between water-soluble carbohydrate and ketone () functional groups, and as a test for reducing sugars and non-reducing sugars, supplementary to the Tollens' reagent test. The test was developed by German chemist Hermann von Fehling in 1849. Fehling's solution is prepared by combining two separate solutions: Fehling's A, which is a deep blue aqueous solution of copper(II) sulfate, and Fehling's B, which is a colorless solution of aqueous potassium sodium tartrate (also known as Rochelle salt) made strongly alkali with sodium hydroxide. These two solutions, stable separately, are combined when needed for the test because the copper(II) complex formed by their combination is not stable: it slowly decomposes into copper hydroxide in the alkaline conditions. The active reagent is a tartrate complex of Cu2+, which serves as an oxidizing agent. The tartrate serves as a ligand. However, the coordination chemistry is complex and various species with different metal to ligand ratio have been determined. Other methods of preparing comparable cupric-ion test-reagent solutions were developed at about the same time as Fehling's. These include the Violette solution (eponymous for Charles Violette) and the Soxhlet solution (eponymous for Franz von Soxhlet), both containing tartrate, and Soldaïni's solution (eponymous for Arturo Soldaïni), which instead contains carbonate. Fehling's solution can be used to distinguish aldehyde vs ketone functional groups. The compound to be tested is added to the Fehling's solution and the mixture is heated. Aldehydes are oxidized, giving a positive result, but ketones do not react, unless they are α-hydroxy ketones. The bistartratocuprate(II) complex oxidizes the aldehyde to a carboxylate anion, and in the process the copper(II) ions of the complex are reduced to copper(I) ions. Red copper(I) oxide then precipitates out of the reaction mixture, which indicates a positive result i.e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.