Summary
Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy (including light) in terms of absolute power. In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way. The weightings are standardized by the CIE and ISO. The human eye is not equally sensitive to all wavelengths of visible light. Photometry attempts to account for this by weighting the measured power at each wavelength with a factor that represents how sensitive the eye is at that wavelength. The standardized model of the eye's response to light as a function of wavelength is given by the luminosity function. The eye has different responses as a function of wavelength when it is adapted to light conditions (photopic vision) and dark conditions (scotopic vision). Photometry is typically based on the eye's photopic response, and so photometric measurements may not accurately indicate the perceived brightness of sources in dim lighting conditions where colors are not discernible, such as under just moonlight or starlight. Photopic vision is characteristic of the eye's response at luminance levels over three candela per square metre. Scotopic vision occurs below 2 × 10−5 cd/m2. Mesopic vision occurs between these limits and is not well characterised for spectral response. Measurement of the effects of electromagnetic radiation became a field of study as early as the end of 18th century. Measurement techniques varied depending on the effects under study and gave rise to different nomenclature. The total heating effect of infrared radiation as measured by thermometers led to development of radiometric units in terms of total energy and power.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
CH-448: Photomedicine
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biolog
BIOENG-445: Biomedical optics
This course addresses the principles governing the interactions between light and biological tissue, their optical properties and basic concepts of radiometry. Illustrative diagnostic and therapeutic
AR-241: Building technology III
Ce cours traite des divers domaines techniques intervenant dans la conception et la réalisation d'un bâtiment, soit : physique du bâtiment, structures, matériaux, construction et installations techniq
Show more
Related publications (32)
Related concepts (9)
Irradiance
In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.
Luminous efficacy
Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power (electric power, chemical energy, or others) consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear.
Radiance
In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (). It is a directional quantity: the radiance of a surface depends on the direction from which it is being observed.
Show more