In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. ε-quadratic form#Manifolds and Intersection form (4-manifold) For a connected oriented manifold M of dimension 2n the intersection form is defined on the n-th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class [M] in H2n(M, ∂M). Stated precisely, there is a bilinear form given by with This is a symmetric form for n even (so 2n = 4k doubly even), in which case the signature of M is defined to be the signature of the form, and an alternating form for n odd (so 2n = 4k + 2 is singly even). These can be referred to uniformly as ε-symmetric forms, where ε = (−1)n = ±1 respectively for symmetric and skew-symmetric forms. It is possible in some circumstances to refine this form to an ε-quadratic form, though this requires additional data such as a framing of the tangent bundle. It is possible to drop the orientability condition and work with Z/2Z coefficients instead. These forms are important topological invariants. For example, a theorem of Michael Freedman states that simply connected compact 4-manifolds are (almost) determined by their intersection forms up to homeomorphism. By Poincaré duality, it turns out that there is a way to think of this geometrically. If possible, choose representative n-dimensional submanifolds A, B for the Poincaré duals of a and b. Then λM (a, b) is the oriented intersection number of A and B, which is well-defined because since dimensions of A and B sum to the total dimension of M they generically intersect at isolated points.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (103)
Homology of Riemann Surfaces
Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.
Tangent Lines and Equality
Explores the intersection multiplicity of curves and the absence of common tangent lines.
Intersection Numbers: Algebraic Counting Solutions
Explores intersection numbers for counting solutions to polynomial equations algebraically and their geometric significance in intersection theory and enumerative geometry.
Show more
Related publications (40)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.