In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form.
There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
ε-quadratic form#Manifolds and Intersection form (4-manifold)
For a connected oriented manifold M of dimension 2n the intersection form is defined on the n-th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class [M] in H2n(M, ∂M). Stated precisely, there is a bilinear form
given by
with
This is a symmetric form for n even (so 2n = 4k doubly even), in which case the signature of M is defined to be the signature of the form, and an alternating form for n odd (so 2n = 4k + 2 is singly even). These can be referred to uniformly as ε-symmetric forms, where ε = (−1)n = ±1 respectively for symmetric and skew-symmetric forms. It is possible in some circumstances to refine this form to an ε-quadratic form, though this requires additional data such as a framing of the tangent bundle. It is possible to drop the orientability condition and work with Z/2Z coefficients instead.
These forms are important topological invariants. For example, a theorem of Michael Freedman states that simply connected compact 4-manifolds are (almost) determined by their intersection forms up to homeomorphism.
By Poincaré duality, it turns out that there is a way to think of this geometrically. If possible, choose representative n-dimensional submanifolds A, B for the Poincaré duals of a and b. Then λM (a, b) is the oriented intersection number of A and B, which is well-defined because since dimensions of A and B sum to the total dimension of M they generically intersect at isolated points.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
Guido Castelnuovo (14 August 1865 – 27 April 1952) was an Italian mathematician. He is best known for his contributions to the field of algebraic geometry, though his contributions to the study of statistics and probability theory are also significant. Castelnuovo was born in Venice. His father, Enrico Castelnuovo, was a novelist and campaigner for the unification of Italy. His mother Emma Levi was a relative of Cesare Lombroso and David Levi. His wife Elbina Marianna Enriques was the sister of mathematician Federigo Enriques and zoologist Paolo Enriques.
In mathematics, the Enriques–Kodaira classification is a classification of compact complex surfaces into ten classes. For each of these classes, the surfaces in the class can be parametrized by a moduli space. For most of the classes the moduli spaces are well understood, but for the class of surfaces of general type the moduli spaces seem too complicated to describe explicitly, though some components are known. Max Noether began the systematic study of algebraic surfaces, and Guido Castelnuovo proved important parts of the classification.
In algebraic geometry, the Chow groups (named after Wei-Liang Chow by ) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product.
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desi ...
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
A toric variety is called fibered if it can be represented as a total space of fibre bundle over toric base and with toric fiber. Fibered toric varieties form a special case of toric variety bundles. In this note we first give an introduction to the class ...