Summary
In electrical circuit theory, a port is a pair of terminals connecting an electrical network or circuit to an external circuit, as a point of entry or exit for electrical energy. A port consists of two nodes (terminals) connected to an outside circuit which meets the port condition – the currents flowing into the two nodes must be equal and opposite. The use of ports helps to reduce the complexity of circuit analysis. Many common electronic devices and circuit blocks, such as transistors, transformers, electronic filters, and amplifiers, are analyzed in terms of ports. In multiport network analysis, the circuit is regarded as a "black box" connected to the outside world through its ports. The ports are points where input signals are applied or output signals taken. Its behavior is completely specified by a matrix of parameters relating the voltage and current at its ports, so the internal makeup or design of the circuit need not be considered, or even known, in determining the circuit's response to applied signals. The concept of ports can be extended to waveguides, but the definition in terms of current is not appropriate and the possible existence of multiple waveguide modes must be accounted for. Any node of a circuit that is available for connection to an external circuit is called a pole (or terminal if it is a physical object). The port condition is that a pair of poles of a circuit is considered a port if and only if the current flowing into one pole from outside the circuit is equal to the current flowing out of the other pole into the external circuit. Equivalently, the algebraic sum of the currents flowing into the two poles from the external circuit must be zero. It cannot be determined if a pair of nodes meets the port condition by analysing the internal properties of the circuit itself. The port condition is dependent entirely on the external connections of the circuit. What are ports under one set of external circumstances may well not be ports under another. Consider the circuit of four resistors in the figure for example.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.