In electrical circuit theory, a port is a pair of terminals connecting an electrical network or circuit to an external circuit, as a point of entry or exit for electrical energy. A port consists of two nodes (terminals) connected to an outside circuit which meets the port condition – the currents flowing into the two nodes must be equal and opposite.
The use of ports helps to reduce the complexity of circuit analysis. Many common electronic devices and circuit blocks, such as transistors, transformers, electronic filters, and amplifiers, are analyzed in terms of ports. In multiport network analysis, the circuit is regarded as a "black box" connected to the outside world through its ports. The ports are points where input signals are applied or output signals taken. Its behavior is completely specified by a matrix of parameters relating the voltage and current at its ports, so the internal makeup or design of the circuit need not be considered, or even known, in determining the circuit's response to applied signals.
The concept of ports can be extended to waveguides, but the definition in terms of current is not appropriate and the possible existence of multiple waveguide modes must be accounted for.
Any node of a circuit that is available for connection to an external circuit is called a pole (or terminal if it is a physical object). The port condition is that a pair of poles of a circuit is considered a port if and only if the current flowing into one pole from outside the circuit is equal to the current flowing out of the other pole into the external circuit. Equivalently, the algebraic sum of the currents flowing into the two poles from the external circuit must be zero.
It cannot be determined if a pair of nodes meets the port condition by analysing the internal properties of the circuit itself. The port condition is dependent entirely on the external connections of the circuit. What are ports under one set of external circumstances may well not be ports under another. Consider the circuit of four resistors in the figure for example.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is intended for doctoral students using microwaves and microwave equipment during their PhD. It starts with a reminder on microwave circuit theory and continues with the main issues link
Le signal électrique est un vecteur essentiel pour la transmission d'information et d'énergie. En haute fréquence elle se manifeste comme un signal électromagnétique dont l'étude demande le développem
Ce cours introduit les lois fondamentales de l'électricité et les méthodes permettant d'analyser des circuits électriques linéaires, composés de résistances, condensateurs et inductances. On commencer
Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Impedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Y-parameters, H-parameters, T-parameters or ABCD-parameters.
In electronics, a two-port network (a kind of four-terminal network or quadripole) is an electrical network (i.e. a circuit) or device with two pairs of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the current entering one terminal must equal the current emerging from the other terminal on the same port. The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken.
Covers the analysis of LC circuits and complex numbers in AC circuits.
,
In this work, we propose a numerical approach based on forward coupled mode modeling to simultaneously evaluate second- and third-order nonlinearities inside a dispersion-engineered waveguide towards the goal of generating broadband terahertz (THz) radiati ...
New York2023
This paper proposes a Control by Interconnection design, for a class of constrained Port-Hamiltonian systems, which is based on an associated Model Predictive Control optimization problem. This associated optimization problem allows to consider both state ...
The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...