Summary
The prisoner's dilemma is a game theory thought experiment that involves two rational agents, each of whom can cooperate for mutual benefit or betray their partner ("defect") for individual reward. This dilemma was originally framed by Merrill Flood and Melvin Dresher in 1950 while they worked at RAND. Albert W. Tucker later formalized the game by structuring the rewards in terms of prison sentences and named it the "prisoner's dilemma". The prisoner's dilemma models many real-world situations involving strategic behavior. In casual usage, the label "prisoner's dilemma" may be applied to any situation in which two entities could gain important benefits from cooperating or suffer from failing to do so, but find it difficult or expensive to coordinate their activities. William Poundstone described this "typical contemporary version" of the game in his 1993 book Prisoner's Dilemma: Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of speaking to or exchanging messages with the other. The police admit they don't have enough evidence to convict the pair on the principal charge. They plan to sentence both to a year in prison on a lesser charge. Simultaneously, the police offer each prisoner a Faustian bargain. If he testifies against his partner, he will go free while the partner will get three years in prison on the main charge. Oh, yes, there is a catch ... If both prisoners testify against each other, both will be sentenced to two years in jail. The prisoners are given a little time to think this over, but in no case may either learn what the other has decided until he has irrevocably made his decision. Each is informed that the other prisoner is being offered the very same deal. Each prisoner is concerned only with his own welfare—with minimizing his own prison sentence. This leads to four different possible outcomes for prisoners A and B: If A and B both remain silent, they will each serve one year in prison.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.