In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.
Let and be measurable spaces, meaning that and are sets equipped with respective -algebras and A function is said to be measurable if for every the pre-image of under is in ; that is, for all
That is, where is the σ-algebra generated by f. If is a measurable function, one writes
to emphasize the dependency on the -algebras and
The choice of -algebras in the definition above is sometimes implicit and left up to the context. For example, for or other topological spaces, the Borel algebra (generated by all the open sets) is a common choice. Some authors define measurable functions as exclusively real-valued ones with respect to the Borel algebra.
If the values of the function lie in an infinite-dimensional vector space, other non-equivalent definitions of measurability, such as weak measurability and Bochner measurability, exist.
Random variables are by definition measurable functions defined on probability spaces.
If and are Borel spaces, a measurable function is also called a Borel function. Continuous functions are Borel functions but not all Borel functions are continuous. However, a measurable function is nearly a continuous function; see Luzin's theorem. If a Borel function happens to be a section of a map it is called a Borel section.
A Lebesgue measurable function is a measurable function where is the -algebra of Lebesgue measurable sets, and is the Borel algebra on the complex numbers Lebesgue measurable functions are of interest in mathematical analysis because they can be integrated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space X, the collection of all Borel sets on X forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).
In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Consider a set and a σ-algebra on Then the tuple is called a measurable space. Note that in contrast to a measure space, no measure is needed for a measurable space. Look at the set: One possible -algebra would be: Then is a measurable space.
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).
Explores the countable additivity of measurable sets and the properties of sigma algebra, highlighting the significance of understanding measurable functions in analysis.
Dans ce cours on définira et étudiera la notion de mesure et d'intégrale contre une mesure dans un cadre général, généralisant ce qui a été fait en Analyse IV dans le cas réel.
On verra aussi quelques
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( ℓ2 and ℓ1 regulariz ...
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
EPFL2024
, ,
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL) with the ϵ-greedy exploration under the online setting. This problem setting is motivated by the successful deep Q-networks (DQN) framework that fa ...