A viral envelope is the outermost layer of many types of viruses. It protects the genetic material in their life cycle when traveling between host cells. Not all viruses have envelopes. A viral envelope protein or E protein is a protein in the envelope, which may be acquired by the capsid from an infected host cell.
Numerous human pathogenic viruses in circulation are encased in lipid bilayers, and they infect their target cells by causing the viral envelope and cell membrane to fuse. Although there are effective vaccines against some of these viruses, there is no preventative or curative medicine for the majority of them. In most cases, the known vaccines operate by inducing antibodies that prevent the pathogen from entering cells. This happens in the case of enveloped viruses when the antibodies bind to the viral envelope proteins.
The membrane fusion event that triggers viral entrance is caused by the viral fusion protein. Many enveloped viruses only have one protein visible on the surface of the particle, which is required for both mediating adhesion to the cell surface and for the subsequent membrane fusion process. To create potentially protective vaccines for human pathogenic enveloped viruses for which there is currently no vaccine, it is essential to comprehend how antibodies interact with viral envelope proteins, particularly with the fusion protein, and how antibodies neutralize viruses.
Enveloped viruses enter cells by joining a cellular membrane to their lipid bilayer membrane. Priming by proteolytic processing, either of the fusion protein or of a companion protein, is necessary for the majority of viral fusion proteins. The priming stage then gets the fusion protein ready for triggering by the processes that go along with attachment and uptake, which frequently happens during transport of the fusion protein to the cell surface but may also happen extracellularly. So far, structural studies have revealed two kinds of viral fusion proteins. These proteins are believed to catalyze the same mechanism in both situations, resulting in the fusing of two bilayers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1892 article describing a non-bacterial pathogen infecting tobacco plants and the discovery of the tobacco mosaic virus by Martinus Beijerinck in 1898, more than 11,000 of the millions of virus species have been described in detail.
Papillomaviridae is a family of non-enveloped DNA viruses whose members are known as papillomaviruses. Several hundred species of papillomaviruses, traditionally referred to as "types", have been identified infecting all carefully inspected mammals, but also other vertebrates such as birds, snakes, turtles and fish. Infection by most papillomavirus types, depending on the type, is either asymptomatic (e.g. most Beta-PVs) or causes small benign tumors, known as papillomas or warts (e.g. human papillomavirus 1, HPV6 or HPV11).
A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or may not correspond to individual proteins, are called capsomeres. The proteins making up the capsid are called capsid proteins or viral coat proteins (VCP). The capsid and inner genome is called the nucleocapsid. Capsids are broadly classified according to their structure.
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fus ...
Influenza is an infectious respiratory illness caused by influenza viruses. Every year, it causes up to one billion cases of disease worldwide. Despite its high disease burden, the transmission pathway of influenza remains subject to debate. There is incre ...
EPFL2024
Before the COVID-19 pandemic, viruses were not a major priority for the scientific community. Today, many events have changed the world and the importance of studying viruses, vaccines, and antiviral drugs is fully appreciated. The development of effective ...