Two mathematical objects a and b are called equal up to an equivalence relation R
if a and b are related by R, that is,
if aRb holds, that is,
if the equivalence classes of a and b with respect to R are equal.
This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count.
For example, x is unique up to R means that all objects x under consideration are in the same equivalence class with respect to the relation R.
Moreover, the equivalence relation R is often designated rather implicitly by a generating condition or transformation.
For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation R that relates two lists if one can be obtained by reordering (permutation) from the other. As another example, the statement "the solution to an indefinite integral is sin(x), up to addition of a constant" tacitly employs the equivalence relation R between functions, defined by fRg if the difference f−g is a constant function, and means that the solution and the function sin(x) are equal up to this R.
In the picture, "there are 4 partitions up to rotation" means that the set P has 4 equivalence classes with respect to R defined by aRb if b can be obtained from a by rotation; one representative from each class is shown in the bottom left picture part.
Equivalence relations are often used to disregard possible differences of objects, so "up to R" can be understood informally as "ignoring the same subtleties as R ignores".
In the factorization example, "up to ordering" means "ignoring the particular ordering".
Further examples include "up to isomorphism", "up to permutations", and "up to rotations", which are described in the Examples section.
In informal contexts, mathematicians often use the word modulo (or simply "mod") for similar purposes, as in "modulo isomorphism".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
A mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its under the canonical projection map is open in the original topological space.
We confirm, for the primes up to 3000, the conjecture of Bourgain-Gamburd-Sarnak and Baragar on strong approximation for the Markoff surface modulo primes. For primes congruent to 3 modulo 4, we find data suggesting that some natural graphs constructed fro ...