Concept

Classical nucleation theory

Summary
Classical nucleation theory (CNT) is the most common theoretical model used to quantitatively study the kinetics of nucleation. Nucleation is the first step in the spontaneous formation of a new thermodynamic phase or a new structure, starting from a state of metastability. The kinetics of formation of the new phase is frequently dominated by nucleation, such that the time to nucleate determines how long it will take for the new phase to appear. The time to nucleate can vary by orders of magnitude, from negligible to exceedingly large, far beyond reach of experimental timescales. One of the key achievements of classical nucleation theory is to explain and quantify this immense variation. Description The central result of classical nucleation theory is a prediction for the rate of nucleation R, in units of (number of events)/(volume·time). For instance, a rate R = 1000 \ \text{m}^{-3}\text{s}^{-1} in a supersaturated vapor would correspond to an ave
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading