**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Jacobi elliptic functions

Summary

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by . Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.
There are twelve Jacobi elliptic functions denoted by , where and are any of the letters , , , and . (Functions of the form are trivially set to unity for notational completeness.) is the argument, and is the parameter, both of which may be complex. In fact, the Jacobi elliptic functions are meromorphic in both and . The distribution of the zeros and poles in the -plane is well-known. However, questions of the distribution of the zeros and poles in the -plane remain to be investigated.
In the complex plane of the argument , the twelve functions form a repeating lattice of simple poles and zeroes. Depending on the function, one repeating parallelogram, or unit cell, will have sides of length or on the real axis, and or on the imaginary axis, where and are known as the quarter periods with being the elliptic integral of the first kind. The nature of the unit cell can be determined by inspecting the "auxiliary rectangle" (generally a parallelogram), which is a rectangle formed by the origin at one corner, and as the diagonally opposite corner.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (1)

Related concepts (15)

Related MOOCs (12)

Related courses (99)

Nome (mathematics)

In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees. The nome function is given by where and are the quarter periods, and and are the fundamental pair of periods, and is the half-period ratio.

Jacobi elliptic functions

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for .

Elliptic integral

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function f which can be expressed in the form where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated roots, and c is a constant.

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

MATH-105(b): Advanced analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.

MATH-101(g): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

A treatment is described for getting some algebro-geometric solutions of the coupled modified Kadomtsev-Petviashvili (cmKP) equations and a hierarchy of 1 + 1 dimensional integrable nonlinear evolutio

Related lectures (1,000)

Real Functions: Definitions and Examples

Explores definitions and examples of real functions of a real variable.

Quantum Chaos and Scrambling

Explores the concept of scrambling in quantum chaotic systems, connecting classical chaos to quantum chaos and emphasizing sensitivity to initial conditions.

Derivatives and Continuity in Multivariable Functions

Covers derivatives and continuity in multivariable functions, emphasizing the importance of partial derivatives.