In , a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.
Indeed, this intuition can be formalized to define so-called . Natural transformations are, after categories and functors, one of the most fundamental notions of and consequently appear in the majority of its applications.
If and are functors between the categories and , then a natural transformation from to is a family of morphisms that satisfies two requirements.
The natural transformation must associate, to every object in , a morphism between objects of . The morphism is called the component of at .
Components must be such that for every morphism in we have:
The last equation can conveniently be expressed by the commutative diagram
If both and are contravariant, the vertical arrows in the right diagram are reversed. If is a natural transformation from to , we also write or . This is also expressed by saying the family of morphisms is natural in .
If, for every object in , the morphism is an isomorphism in , then is said to be a (or sometimes natural equivalence or isomorphism of functors). Two functors and are called naturally isomorphic or simply isomorphic if there exists a natural isomorphism from to .
An infranatural transformation from to is simply a family of morphisms , for all in . Thus a natural transformation is an infranatural transformation for which for every morphism . The naturalizer of , nat, is the largest of containing all the objects of on which restricts to a natural transformation.
Statements such as
"Every group is naturally isomorphic to its opposite group"
abound in modern mathematics. We will now give the precise meaning of this statement as well as its proof.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
In mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
In , a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors (here, is another object in the category). Functor categories are of interest for two main reasons: many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable; every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
Visual estimates of stimulus features are systematically biased toward the features of previously encountered stimuli. Such serial dependencies have often been linked to how the brain maintains perceptual continuity. However, serial dependence has mostly b ...
Let X /S be a flat algebraic stack of finite presentation. We define a new & eacute;tale fundamental pro-groupoid pi(1)(X /S), generalizing Grothendieck's enlarged & eacute;tale fundamental group from SGA 3 to the relative situation. When S is of equal pos ...