Related concepts (38)
Σ-finite measure
In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.
Frigyes Riesz
Frigyes Riesz (Riesz Frigyes, ˈriːs ˈfriɟɛʃ, sometimes spelled as Frederic; 22 January 1880 – 28 February 1956) was a Hungarian mathematician who made fundamental contributions to functional analysis, as did his younger brother Marcel Riesz. He was born into a Jewish family in Győr, Austria-Hungary and died in Budapest, Hungary. Between 1911 and 1919 he was a professor at the Franz Joseph University in Kolozsvár, Austria-Hungary.
Polarization identity
In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The polarization identity shows that a norm can arise from at most one inner product; however, there exist norms that do not arise from any inner product.
Markov's inequality
In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources, especially in analysis, refer to it as Chebyshev's inequality (sometimes, calling it the first Chebyshev inequality, while referring to Chebyshev's inequality as the second Chebyshev inequality) or Bienaymé's inequality.
Finite measure
In measure theory, a branch of mathematics, a finite measure or totally finite measure is a special measure that always takes on finite values. Among finite measures are probability measures. The finite measures are often easier to handle than more general measures and show a variety of different properties depending on the sets they are defined on. A measure on measurable space is called a finite measure if it satisfies By the monotonicity of measures, this implies If is a finite measure, the measure space is called a finite measure space or a totally finite measure space.
Hilbert transform
In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see ). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° ( radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see ).
Projective tensor product
In functional analysis, an area of mathematics, the projective tensor product of two locally convex topological vector spaces is a natural topological vector space structure on their tensor product. Namely, given locally convex topological vector spaces and , the projective topology, or π-topology, on is the strongest topology which makes a locally convex topological vector space such that the canonical map (from to ) is continuous. When equipped with this topology, is denoted and called the projective tensor product of and .
Simple function
In the mathematical field of real analysis, a simple function is a real (or complex)-valued function over a subset of the real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values. Some authors also require simple functions to be measurable; as used in practice, they invariably are.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.