Mesure sigma-finieSoit (X, Σ, μ) un espace mesuré. On dit que la mesure μ est σ-finie lorsqu'il existe un recouvrement dénombrable de X par des sous-ensembles de mesure finie, c'est-à-dire lorsqu'il existe une suite (E) d'éléments de la tribu Σ, tous de mesure finie, avec Mesure finie Mesure de comptage sur un ensemble dénombrable Mesure de Lebesgue. En effet, l'ensemble des intervalles pour tous les nombres entiers est un recouvrement dénombrable de , et chacun des intervalles est de mesure 1.
Frigyes RieszFrigyes Riesz (Friedrich en allemand et Frédéric en français), né le à Győr et mort le à Budapest, est un mathématicien hongrois. Il est l'un des fondateurs de l'analyse fonctionnelle. Frigyes Riesz étudie à Budapest, Göttingen et Zurich. Il reçoit son doctorat en 1902 à l'université Loránd Eötvös de Budapest. Il est appelé en 1911 pour une chaire à l'université Kolozsvár (en allemand Klausenburg, en Transylvanie). Comme Kolozsvár (aujourd'hui Cluj-Napoca, Roumanie) devient roumaine en 1920 avec la Paix du Trianon, l'université est déplacée à Szeged.
Identité de polarisationEn mathématiques, les identités de polarisation concernent l'algèbre multilinéaire. Elles correspondent à une caractérisation des formes bilinéaires symétriques, des formes sesquilinéaires hermitiennes. Si E est un espace vectoriel, ces formes sont des applications de E×E dans le corps des scalaires (réels ou complexes). Elles sont intégralement caractérisées par leur comportement sur la diagonale, c'est-à-dire par la connaissance d'une telle forme f sur l'ensemble des points (x, x) où x est un élément quelconque de E.
Inégalité de MarkovEn théorie des probabilités, l'inégalité de Markov donne une majoration de la probabilité qu'une variable aléatoire réelle à valeurs positives soit supérieure ou égale à une constante positive. Cette inégalité a été nommée ainsi en l'honneur d'Andreï Markov. Il existe une version plus générale de ce théorème. Soit une variable aléatoire de où est l'ensemble des réalisations, est la tribu des événements et la mesure de probabilité. Alors, l'inégalité de Markov peut être énoncée de la façon suivante :La démonstration tient entièrement au fait que pour tout strictement positif, .
Finite measureIn measure theory, a branch of mathematics, a finite measure or totally finite measure is a special measure that always takes on finite values. Among finite measures are probability measures. The finite measures are often easier to handle than more general measures and show a variety of different properties depending on the sets they are defined on. A measure on measurable space is called a finite measure if it satisfies By the monotonicity of measures, this implies If is a finite measure, the measure space is called a finite measure space or a totally finite measure space.
Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
Projective tensor productIn functional analysis, an area of mathematics, the projective tensor product of two locally convex topological vector spaces is a natural topological vector space structure on their tensor product. Namely, given locally convex topological vector spaces and , the projective topology, or π-topology, on is the strongest topology which makes a locally convex topological vector space such that the canonical map (from to ) is continuous. When equipped with this topology, is denoted and called the projective tensor product of and .
Fonction étagéeEn mathématiques et en analyse : Une fonction simple est une fonction numérique dont l' est constituée d'un nombre fini de valeurs réelles (ou éventuellement complexes) ; Une fonction étagée est une fonction simple définie sur un espace mesurable et qui est elle-même une fonction mesurable ; Une fonction en escalier est une fonction étagée définie sur l’ensemble des réels et dont les valeurs (réelles) sont constantes sur des intervalles : ce sont donc des fonctions constantes par morceaux.