Pia mater (ˈpaɪ.ə_ˈmeɪtər or ˈpiːə_ˈmɑːtər), often referred to as simply the pia, is the delicate innermost layer of the meninges, the membranes surrounding the brain and spinal cord. Pia mater is medieval Latin meaning "tender mother". The other two meningeal membranes are the dura mater and the arachnoid mater. Both the pia and arachnoid mater are derivatives of the neural crest while the dura is derived from embryonic mesoderm. The pia mater is a thin fibrous tissue that is permeable to water and small solutes. The pia mater allows blood vessels to pass through and nourish the brain. The perivascular space between blood vessels and pia mater is proposed to be part of a pseudolymphatic system for the brain (glymphatic system). When the pia mater becomes irritated and inflamed the result is meningitis.
Pia mater is the thin, translucent, mesh-like meningeal envelope, spanning nearly the entire surface of the brain. It is absent only at the natural openings between the ventricles, the median aperture, and the lateral aperture. The pia firmly adheres to the surface of the brain and loosely connects to the arachnoid layer. Because of this continuum, the layers are often referred to as the pia arachnoid or leptomeninges. A subarachnoid space exists between the arachnoid layer and the pia, into which the choroid plexus releases and maintains the cerebrospinal fluid (CSF). The subarachnoid space contains trabeculae, or fibrous filaments, that connect and bring stability to the two layers, allowing for the appropriate protection from and movement of the proteins, electrolytes, ions, and glucose contained within the CSF.
The thin membrane is composed of fibrous connective tissue, which is covered by a sheet of flat cells impermeable to fluid on its outer surface. A network of blood vessels travels to the brain and spinal cord by interlacing through the pia membrane. These capillaries are responsible for nourishing the brain. This vascular membrane is held together by areolar tissue covered by mesothelial cells from the delicate strands of connective tissue called the arachnoid trabeculae.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
BackgroundImpaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia ...
Correction for 'Resurgence of DSCs with copper electrolyte: a detailed investigation of interfacial charge dynamics with cobalt and iodine based electrolytes' by Sourava C. Pradhan et al., J. Mater. Chem. A, 2018, 6, 22204-22214, DOI: 10.1039/C8TA06948D. ...
In this reply, we address the concerns that were raised about our paper on CsPbBr3 single crystals. M. Szafranski criticized the dielectric and DSC data in our original paper claiming that they were affected by the experimental artefacts or poor quality of ...
The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the spinal cord, which contains cerebrospinal fluid. The brain and spinal cord together make up the central nervous system (CNS). In humans, the spinal cord begins at the occipital bone, passing through the foramen magnum and then enters the spinal canal at the beginning of the cervical vertebrae.
In neuroanatomy, dura mater is a thick membrane made of dense irregular connective tissue that surrounds the brain and spinal cord. It is the outermost of the three layers of membrane called the meninges that protect the central nervous system. The other two meningeal layers are the arachnoid mater and the pia mater. It envelops the arachnoid mater, which is responsible for keeping in the cerebrospinal fluid. It is derived primarily from the neural crest cell population, with postnatal contributions of the paraxial mesoderm.
The ventricular system is a set of four interconnected cavities known as cerebral ventricles in the brain. Within each ventricle is a region of choroid plexus which produces the circulating cerebrospinal fluid (CSF). The ventricular system is continuous with the central canal of the spinal cord from the fourth ventricle, allowing for the flow of CSF to circulate. All of the ventricular system and the central canal of the spinal cord are lined with ependyma, a specialised form of epithelium connected by tight junctions that make up the blood–cerebrospinal fluid barrier.