Compact spaceIn mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact.
Tychonoff spaceIn topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space refers to any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Tychonoff spaces are named after Andrey Nikolayevich Tychonoff, whose Russian name (Тихонов) is variously rendered as "Tychonov", "Tikhonov", "Tihonov", "Tichonov", etc.
Complete metric spaceIn mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M. Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below).
Balanced setIn linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field with an absolute value function ) is a set such that for all scalars satisfying The balanced hull or balanced envelope of a set is the smallest balanced set containing The balanced core of a set is the largest balanced set contained in Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neig
Metrizable spaceIn topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable.
Linear formIn mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If V is a vector space over a field k, the set of all linear functionals from V to k is itself a vector space over k with addition and scalar multiplication defined pointwise. This space is called the dual space of V, or sometimes the algebraic dual space, when a topological dual space is also considered.
Totally bounded spaceIn topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size” (where the meaning of “size” depends on the structure of the ambient space). The term precompact (or pre-compact) is sometimes used with the same meaning, but precompact is also used to mean relatively compact. These definitions coincide for subsets of a complete metric space, but not in general.
Absorbing setIn functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
Holomorphic functionIn mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.
Function spaceIn mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space. Vector space#Function spaces Let be a vector space over a field and let be any set.