Concept

Harmonic map

Summary
In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory of unit-speed geodesics in Riemannian geometry and the theory of harmonic functions. Informally, the Dirichlet energy of a mapping f from a Riemannian manifold M to a Riemannian manifold N can be thought of as the total amount that f stretches M in allocating each of its elements to a point of N. For instance, an unstretched rubber band and a smooth stone can both be naturally viewed as Riemannian manifolds. Any way of stretching the rubber band over the stone can be viewed as a mapping between these manifolds, and the total tension involved is represented by the Dirichlet energy. Harmonicity of such a mapping means that, given any hypothetical way of physically deforming the given stretch, the tension (when considered as a function of time) has first derivative equal to zero when the deformation begins. The theory of harmonic maps was initiated in 1964 by James Eells and Joseph Sampson, who showed that in certain geometric contexts, arbitrary maps could be deformed into harmonic maps. Their work was the inspiration for Richard Hamilton's initial work on the Ricci flow. Harmonic maps and the associated harmonic map heat flow, in and of themselves, are among the most widely studied topics in the field of geometric analysis. The discovery of the "bubbling" of sequences of harmonic maps, due to Jonathan Sacks and Karen Uhlenbeck, has been particularly influential, as their analysis has been adapted to many other geometric contexts. Notably, Uhlenbeck's parallel discovery of bubbling of Yang–Mills fields is important in Simon Donaldson's work on four-dimensional manifolds, and Mikhael Gromov's later discovery of bubbling of pseudoholomorphic curves is significant in applications to symplectic geometry and quantum cohomology.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.