Concept

Application harmonique

Résumé
En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés. Par suite, la recherche des applications harmoniques englobe à la fois celle des géodésiques et celle des fonctions numériques qui sont harmoniques sur un ouvert de l'espace euclidien. On peut concevoir de façon informelle l'énergie de Dirichlet de l'application Φ comme une mesure de l'étirement (au sens de la tension superficielle) qu'il faut imprimer pour amener les points de M à leur position dans N. Ainsi, étirer une bande de caoutchouc pour la placer sur un galet lisse peut servir d'expérience de pensée pour modéliser l'application des points de la bande au repos vers sa position finale, et son énergie. Une caractéristique de la position finale de la bande, et qui est l'expression du caractère harmonique de l'application, est qu'il s'agit d'une position d'équilibre : au premier ordre, pour toute déformation physique de la bande qu'on peut concevoir, la dérivée de l'énergie est nulle à l'instant initial. Les initiateurs de la théorie des fonctions harmoniques, James Eells et Joseph H. Sampson, ont montré en 1964 que, dans un contexte géométrique adéquat, une application régulière quelconque, pouvait être déformée par homotopie en une application harmonique. Les applications harmoniques l'étude du flot de la chaleur, par elles-mêmes et à titre d'inspiration, font partie des sujets les plus étudiés dans le domaine de l'analyse géométrique. Le travail de Eells et Sampson a notamment servi d'inspiration première à Richard S. Hamilton dans ses recherches sur le flot de Ricci, qui ont conduit à la preuve de la conjecture de Poincaré.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.