In functional analysis, the weak operator topology, often abbreviated WOT, is the weakest topology on the set of bounded operators on a Hilbert space , such that the functional sending an operator to the complex number is continuous for any vectors and in the Hilbert space. Explicitly, for an operator there is base of neighborhoods of the following type: choose a finite number of vectors , continuous functionals , and positive real constants indexed by the same finite set . An operator lies in the neighborhood if and only if for all . Equivalently, a net of bounded operators converges to in WOT if for all and , the net converges to . The WOT is the weakest among all common topologies on , the bounded operators on a Hilbert space . The strong operator topology, or SOT, on is the topology of pointwise convergence. Because the inner product is a continuous function, the SOT is stronger than WOT. The following example shows that this inclusion is strict. Let and consider the sequence of unilateral shifts. An application of Cauchy-Schwarz shows that in WOT. But clearly does not converge to in SOT. The linear functionals on the set of bounded operators on a Hilbert space that are continuous in the strong operator topology are precisely those that are continuous in the WOT (actually, the WOT is the weakest operator topology that leaves continuous all strongly continuous linear functionals on the set of bounded operators on the Hilbert space H). Because of this fact, the closure of a convex set of operators in the WOT is the same as the closure of that set in the SOT. It follows from the polarization identity that a net converges to in SOT if and only if in WOT. The predual of B(H) is the trace class operators C1(H), and it generates the w*-topology on B(H), called the weak-star operator topology or σ-weak topology. The weak-operator and σ-weak topologies agree on norm-bounded sets in B(H). A net {Tα} ⊂ B(H) converges to T in WOT if and only Tr(TαF) converges to Tr(TF) for all finite-rank operator F.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.