Summary
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.) if they are closed (respectively, compact, etc.) with respect to the weak topology. Likewise, functions are sometimes called weakly continuous (respectively, weakly differentiable, weakly analytic, etc.) if they are continuous (respectively, differentiable, analytic, etc.) with respect to the weak topology. Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence. The early pioneers of functional analysis did not elevate norm convergence above weak convergence and oftentimes viewed weak convergence as preferable. In 1929, Banach introduced weak convergence for normed spaces and also introduced the analogous weak-* convergence. The weak topology is also called topologie faible and schwache Topologie. Topologies on spaces of linear maps Let be a topological field, namely a field with a topology such that addition, multiplication, and division are continuous. In most applications will be either the field of complex numbers or the field of real numbers with the familiar topologies. Dual system#Weak topology Both the weak topology and the weak* topology are special cases of a more general construction for pairings, which we now describe. The benefit of this more general construction is that any definition or result proved for it applies to both the weak topology and the weak* topology, thereby making redundant the need for many definitions, theorem statements, and proofs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (31)
MATH-726: Working group in Topology I
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
MATH-220: Metric and topological spaces
A topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where the concept of nearness is measured by a distance function. Within this abs
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Show more
Related lectures (90)
CW Complexes
Covers the construction and properties of CW complexes, including weak topology and characteristic maps.
Definition of Sobolew Spaces
Explains the definition of Sobolew spaces and their main properties, focusing on weak denivelre.
Seifert van Kampen: proof and identification
Covers the proof and identification of isomorphisms in the Seifert van Kampen theorem.
Show more
Related publications (88)

Shape Holomorphy of Boundary Integral Operators on Multiple Open Arcs

Fernando José Henriquez Barraza

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
New York2024

CONVERGENCE AND NONCONVERGENCE OF SCALED SELF-INTERACTING RANDOM WALKS TO BROWNIAN MOTION PERTURBED AT EXTREMA

Thomas Mountford

We use generalized Ray-Knight theorems, introduced by B. Toth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and negative results concerning convergence of some classes of diffusively scaled sel ...
Cleveland2023

Multi-agent reinforcement learning with graph convolutional neural networks for optimal bidding strategies of generation units in electricity markets

Olga Fink, Mina Montazeri

Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation uni ...
PERGAMON-ELSEVIER SCIENCE LTD2023
Show more
Related concepts (30)
Topological vector space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also continuous functions. Such a topology is called a and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness.
Locally convex topological vector space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family.
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Show more