In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle.
Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint.
The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc.
The inscribed angle theorem appears as Proposition 20 on Book 3 of Euclid's Elements.
The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that subtends the same arc on the circle. Therefore, the angle does not change as its vertex is moved to different positions on the circle.
Let O be the center of a circle, as in the diagram at right. Choose two points on the circle, and call them V and A. Draw line VO and extended past O so that it intersects the circle at point B which is diametrically opposite the point V. Draw an angle whose vertex is point V and whose sides pass through points A and B.
Draw line OA. Angle BOA is a central angle; call it θ. Lines OV and OA are both radii of the circle, so they have equal lengths. Therefore, triangle VOA is isosceles, so angle BVA (the inscribed angle) and angle VAO are equal; let each of them be denoted as ψ.
Angles BOA and AOV add up to 180°, since line VB passing through O is a straight line. Therefore, angle AOV measures 180° − θ.
It is known that the three angles of a triangle add up to 180°, and the three angles of triangle VOA are:
180° − θ
ψ
ψ.
Therefore,
Subtract
from both sides,
where θ is the central angle subtending arc AB and ψ is the inscribed angle subtending arc AB.
Given a circle whose center is point O, choose three points V, C, and D on the circle. Draw lines VC and VD: angle DVC is an inscribed angle. Now draw line VO and extend it past point O so that it intersects the circle at point E. Angle DVC subtends arc DC on the circle.
Suppose this arc includes point E within it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power of a point with respect to a circle with center and radius is defined by If is outside the circle, then , if is on the circle, then and if is inside the circle, then . Due to the Pythagorean theorem the number has the simple geometric meanings shown in the diagram: For a point outside the circle is the squared tangential distance of point to the circle .
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct the morphology of scanned genus-0 rough surface patches with open edges. We first develop a novel one-to-one conformal mapping algorithm with minimal area distortion for paramet ...
Among our five senses, we rely mostly on audition and vision to perceive an environment. Our ears are able to detect stimuli from all directions, especially from obstructed and far-away objects. Even in smoke, harsh weather conditions, or at night â situ ...
The complete radiation field pattern of a vertical Hertzian dipole antenna on or above a lossless or low-loss dielectric half-space is studied using a rigorous Sommerfeld formalism. The reflected fields in the air above the interface and the subsurface fie ...