Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The core of the Sun is considered to extend from the center to about 0.2 to 0.25 of solar radius (). It is the hottest part of the Sun and of the Solar System. It has a density of 150 g/cm3 at the center, and a temperature of 15 million kelvins (15 million degrees Celsius, 27 million degrees Fahrenheit). The core is made of hot, dense plasma (ions and electrons), at a pressure estimated at 265 billion bar (3.84 trillion psi or 26.5 petapascals (PPa)) at the center. Due to fusion, the composition of the solar plasma drops from 68 to 70% hydrogen by mass at the outer core, to 34% hydrogen at the core/Sun center. The core inside 20% of the solar radius contains 34% of the Sun's mass, but only 0.8% of the Sun's volume. Inside 24% of the solar radius is the core which generates 99% of the fusion power of the Sun. There are two distinct reactions in which four hydrogen nuclei may eventually result in one helium nucleus: the proton–proton chain reaction – which is responsible for most of the Sun's released energy – and the CNO cycle. The Sun at the photosphere is about 73–74% by mass hydrogen, which is the same composition as the atmosphere of Jupiter, and the primordial composition of hydrogen at the earliest star formation after the Big Bang. However, as depth into the Sun increases, fusion decreases the fraction of hydrogen. Traveling inward, hydrogen mass fraction starts to decrease rapidly after the core radius has been reached (it is still about 70% at a radius equal to 25% of the Sun's radius) and inside this, the hydrogen fraction drops rapidly as the core is traversed, until it reaches a low of about 33% hydrogen, at the Sun's center (radius zero). All but 2% of the remaining plasma mass (i.e., 65%) is helium. Approximately 3.7 protons (hydrogen nuclei), or roughly 600 million tonnes of hydrogen, are converted into helium nuclei every second releasing energy at a rate of 3.86 joules per second. The core produces almost all of the Sun's heat via fusion: the rest of the star is heated by the outward transfer of heat from the core.
Olivier Sauter, Yiming Li, Ambrogio Fasoli, Basil Duval, Jonathan Graves, Duccio Testa, Patrick Blanchard, Alessandro Pau, Federico Alberto Alfredo Felici, Cristian Sommariva, Antoine Pierre Emmanuel Alexis Merle, Haomin Sun, Michele Marin, Henri Weisen, Richard Pitts, Yann Camenen, Jan Horacek, Javier García Hernández, Marco Wischmeier, Nicola Vianello, Mikhail Maslov, Federico Nespoli, Yao Zhou, Davide Galassi, Antonio José Pereira de Figueiredo, Hamish William Patten, Samuel Lanthaler, Emiliano Fable, Francesca Maria Poli, Daniele Brunetti, Anna Teplukhina, Alberto Mariani, Kenji Tanaka, Bernhard Sieglin, Otto Asunta, Gergely Papp, Leonardo Pigatto
Olivier Sauter, Ambrogio Fasoli, Basil Duval, Stefano Coda, Jonathan Graves, Yves Martin, Duccio Testa, Patrick Blanchard, Alessandro Pau, Cristian Sommariva, Henri Weisen, Richard Pitts, Yann Camenen, Jan Horacek, Javier García Hernández, Marco Wischmeier, Nicola Vianello, Mikhail Maslov, Federico Nespoli, Yao Zhou, David Pfefferlé, Davide Galassi, Antonio José Pereira de Figueiredo, Jonathan Marc Philippe Faustin, Liang Yao, Dalziel Joseph Wilson, Hamish William Patten, Samuel Lanthaler, Xin Gao, Bernhard Sieglin, Otto Asunta