Christian Depeursinge is the leader of the Microvision and Micro-Diagnostics (MVD) group at the Advanced Photonics Laboratory of the Institute of Microengineering at EPFL (Ecole Polytechnique Fédérale de Lausanne), Switzerland (http://apl.epfl.ch/muvision). His research and expertise in biomedical engineering and optics is internationally acknowledged. His current research topics include coherent and incoherent Imaging applied to diagnostics in biology, His research group pioneered in the development of DHM technology. He worked on several projects developed in cooperation with European and international partners. He is author and co-author of over 100 papers published in peer reviewed journals, several book chapters and more than 30 patents. He has given more than 20 invited lectures and plenaries in the last five years. He developed many projects in cooperation with national and international industries. He is co-founder of a start-up company (Lyncée Tec SA: www.Lynceetec.com). He is currently teaching at EPFL and occasionally in foreign universities and institutes. Prof. Dr. Sabine Süsstrunk leads the Image and Visual Representation Lab in the School of Computer and Communication Sciences (IC) at EPFL since 1999. From 2015-2020, she was also the first Director of the Digital Humanities Institute (DHI), College of Humanities (CdH). Her main research areas are in computational photography, computational imaging, color image processing and computer vision, machine learning, and computational image quality and aesthetics. Sabine has authored and co-authored over 200 publications, of which 7 have received best paper/demo awards, and holds over 10 patents. Sabine served as chair and/or committee member in many international conferences on image processing, computer vision, and image systems engineering. She is President of the Swiss Science Council SSC, Founding Member and Member of the Board (President 2014-2018) of the EPFL-WISH (Women in Science and Humanities) Foundation, Member of the Board of the SRG SSR (Swiss Radio and Television Corporation), and Member of the Board of Largo Films. She received the IS&T/SPIE 2013 Electronic Imaging Scientist of the Year Award for her contributions to color imaging, computational photography, and image quality, and the 2018 IS&T Raymond C. Bowman and the 2020 EPFL AGEPoly IC Polysphere Awards for excellence in teaching. Sabine is a Fellow of IEEE and IS&T.
Pascal Fua received an engineering degree from Ecole Polytechnique, Paris, in 1984 and the Ph.D. degree in Computer Science from the University of Orsay in 1989. He then worked at SRI International and INRIA Sophia-Antipolis as a Computer Scientist. He joined EPFL in 1996 where he is now a Professor in the School of Computer and Communication Science and heads the Computer Vision Laboratory. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and Augmented Reality. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and machine learning. He has (co)authored over 300 publications in refereed journals and conferences. He is an IEEE Fellow and has been an Associate Editor of IEEE journal Transactions for Pattern Analysis and Machine Intelligence. He often serves as program committee member, area chair, and program chair of major vision conferences and has cofounded three spinoff companies (Pix4D, PlayfulVision, and NeuralConcept).
Martin Vetterli was appointed president of EPFL by the Federal Council following a selection process conducted by the ETH Board, which unanimously nominated him.
Professor Vetterli was born on 4 October 1957 in Solothurn and received his elementary and secondary education in Neuchâtel Canton. He earned a Bachelor’s degree in electrical engineering from ETH Zurich (ETHZ) in 1981, a Master’s of Science degree from Stanford University in 1982, and a PhD from EPFL in 1986. Professor Vetterli taught at Columbia University as an assistant and then associate professor. He was subsequently named full professor in the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley before returning to EPFL as a full professor at the age of 38. He has also taught at ETHZ and Stanford University.
Professor Vetterli has earned numerous national and international awards for his research in electrical engineering, computer science and applied mathematics, including the National Latsis Prize in 1996. He is a fellow of both the Association for Computing Machinery and the Institute of Electrical and Electronics Engineers and a member the US National Academy of Engineering. He has published over 170 articles and three reference works.
Professor Vetterli’s work on the theory of wavelets, which are used in signal processing, is considered to be of major importance by his peers, and his areas of expertise, including image and video compression and self-organized communication systems, are central to the development of new information technologies. As the founding director of the National Centre of Competence in Research on Mobile Information and Communication Systems, Professor Vetterli is a staunch advocate of transdisciplinary research.
Professor Vetterli knows EPFL inside and out. An EPFL graduate himself, he began been teaching at the school in 1995, was vice president for International Affairs and then Institutional Affairs from 2004 to 2011, and served as dean of the School of Computer and Communication Sciences in 2011 and 2012. In addition to his role as president of the National Research Council of the Swiss National Science Foundation, a position he held from 2013 to 2016, he heads the EPFL’s Audiovisual Communications Laboratory (LCAV) since 1995.
Professor Vetterli has supported more than 60 students in Switzerland and the United States in their doctoral work and makes a point of following their highly successful careers, whether it is in the academic or business world.
He is the author of some 50 patents, some of which were the basis for start-ups coming out of his lab, such as Dartfish and Illusonic, while others were sold (e.g. Qualcomm) as successful examples of technology transfer. He actively encourages young researchers to market the results of their work.
Edoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.
Pierre Vandergheynst received the M.S. degree in physics and the Ph.D. degree in mathematical physics from the Université catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He was Assistant Professor at EPFL (2002-2007), where he is now a Full Professor of Electrical Engineering and, by courtesy, of Computer and Communication Sciences. As of 2015, Prof. Vandergheynst serves as EPFL’s Vice-Provost for Education. His research focuses on harmonic analysis, sparse approximations and mathematical data processing in general with applications covering signal, image and high dimensional data processing, computer vision, machine learning, data science and graph-based data processing. He was co-Editor-in-Chief of Signal Processing (2002-2006), Associate Editor of the IEEE Transactions on Signal Processing (2007-2011), the flagship journal of the signal processing community and currently serves as Associate Editor of Computer Vision and Image Understanding and SIAM Imaging Sciences. He has been on the Technical Committee of various conferences, serves on the steering committee of the SPARS workshop and was co-General Chairman of the EUSIPCO 2008 conference. Pierre Vandergheynst is the author or co-author of more than 70 journal papers, one monograph and several book chapters. He has received two IEEE best paper awards. Professor Vandergheynst is a laureate of the Apple 2007 ARTS award and of the 2009-2010 De Boelpaepe prize of the Royal Academy of Sciences of Belgium.
Alexandre Schmid received the M.Sc. degree in microengineering and the Ph.D. degree in electrical engineering from the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in 1994 and 2000, respectively. Since 1994, he has been with the EPFL, working with the Integrated Systems Laboratory as a Research and Teaching Assistant, and with the Electronics Laboratories as a Postdoctoral Fellow. In 2002, he was a Senior Research Associate with the Microelectronic Systems Laboratory, where he has been conducting research in the fields of bioelectronic interfaces and implantable biomedical electronics, nonconventional signal processing and neuromorphic hardware, and reliability of nanoelectronic devices, and also teaches with the Microengineering and Electrical Engineering Departments of EPFL. Since 2011, he is a Maître d'Enseignement et de Recherche (MER) Faculty Member with EPFL. He is a coauthor of two books, Reliability of Nanoscale Circuits and Systems, Methodologies and Circuit Architectures, Springer, 2011, and Wireless Cortical Implantable Systems, Springer, 2013, and a coeditor of one book, as well as over 100 articles published in journals and conferences.
Dr. Schmid has served as the General Chair of the Fourth International Conference on Nano-Networks in 2009 and has been serving as an Associate Editor of the Institute of Electrical, Information, and Communication Engineers Electronics Express since 2009.