Contingency (philosophy)In philosophy and logic, contingency is the status of propositions that are neither true under every possible valuation (i.e. tautologies) nor false under every possible valuation (i.e. contradictions). A contingent proposition is neither necessarily true nor necessarily false. Propositions that are contingent may be so because they contain logical connectives which, along with the truth value of any of its atomic parts, determine the truth value of the proposition.
Hypothetical syllogismIn classical logic, a hypothetical syllogism is a valid argument form, a syllogism with a conditional statement for one or both of its premises. An example in English: If I do not wake up, then I cannot go to work. If I cannot go to work, then I will not get paid. Therefore, if I do not wake up, then I will not get paid. The term originated with Theophrastus. A pure hypothetical syllogism is a syllogism in which both premises and conclusions are conditionals.
Propositional calculusPropositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.
Axiomatic systemIn mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication.
Modus ponensIn propositional logic, modus ponens (ˈmoʊdəs_ˈpoʊnɛnz; MP), also known as modus ponendo ponens (Latin for "method of putting by placing"), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q. P is true. Therefore Q must also be true." Modus ponens is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence.
Augustus De MorganAugustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician. He formulated De Morgan's laws and introduced the term mathematical induction, making its idea rigorous. Augustus De Morgan was born in Madurai, in the Carnatic region of India in 1806. His father was Lieut.-Colonel John De Morgan (1772–1816), who held various appointments in the service of the East India Company, and his mother, Elizabeth (née Dodson, 1776–1856), was daughter of John Dodson and granddaughter of James Dodson, who computed a table of anti-logarithms (inverse logarithms).
Mathematical logicMathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
PresuppositionIn the branch of linguistics known as pragmatics, a presupposition (or PSP) is an implicit assumption about the world or background belief relating to an utterance whose truth is taken for granted in discourse. Examples of presuppositions include: Jane no longer writes fiction. Presupposition: Jane once wrote fiction. Have you stopped eating meat? Presupposition: you had once eaten meat. Have you talked to Hans? Presupposition: Hans exists.
Logic in Islamic philosophyEarly Islamic law placed importance on formulating standards of argument, which gave rise to a "novel approach to logic" (منطق manṭiq "speech, eloquence") in Kalam (Islamic scholasticism). However, with the rise of the Mu'tazili philosophers, who highly valued Aristotle's Organon, this approach was displaced by the older ideas from Hellenistic philosophy. The works of al-Farabi, Avicenna, al-Ghazali and other Muslim logicians who often criticized and corrected Aristotelian logic and introduced their own forms of logic, also played a central role in the subsequent development of European logic during the Renaissance.
Mill's MethodsMill's Methods are five methods of induction described by philosopher John Stuart Mill in his 1843 book A System of Logic. They are intended to illuminate issues of causation. If two or more instances of the phenomenon under investigation have only one circumstance in common, the circumstance in which alone all the instances agree, is the cause (or effect) of the given phenomenon. For a property to be a necessary condition it must always be present if the effect is present.