ContingenceEn philosophie et épistémologie, la contingence caractérise ce qui peut être ou ne pas être, ou être autrement qu’il n’est. Elle est souvent opposée à la nécessité, qui caractérise des faits qui ne peuvent pas ne pas se produire. La contingence soutient que la réalité n'est pas déterminée par des facteurs préexistants ; elle implique une certaine indétermination ou hasard dans l'existence. En logique, la contingence est le statut des propositions qui ne sont ni toujours vraies, indépendamment de toute valeur de vérité (c'est-à-dire tautologiques), ni toujours fausses (c'est-à-dire contradictoires).
Syllogisme hypothétiqueEn logique classique, un syllogisme hypothétique est une règle d'inférence valide, qui prend la forme d'un syllogisme ayant une implication pour un ou deux de ses prémisses. Si je ne me réveille pas, alors je ne peux pas aller travailler. Si je ne peux pas aller travailler, alors je ne vais pas être payé. Par conséquent, si je ne me réveille pas, alors je ne vais pas être payé. En logique propositionnelle, un syllogisme hypothétique est le nom d'une règle d'inférence valide (souvent abrégé HS et parfois aussi appelé l'argument de la chaîne, la règle de la chaîne, ou le principe de transitivité de l'implication).
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Modus ponensLe modus ponens, ou détachement, est une figure du raisonnement logique concernant l'implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l'antécédent (« or A ») pour en déduire le conséquent (« donc B »). Le terme modus ponens est une abréviation du latin modus ponendo ponens qui signifie « le mode qui, en posant, pose ». Il vient de ce qu'en posant (affirmant) A, on pose (affirme) B (ponendo est le gérondif du verbe ponere qui signifie poser, et ponens en est le participe présent).
Auguste De MorganAuguste (ou Augustus) De Morgan ( à Madurai (Tamil Nadu) - ) est un mathématicien et logicien britannique, né en Inde. Il est le fondateur avec Boole de la logique moderne ; il a notamment formulé les lois de De Morgan. Né d'un père colonel dans l'armée au service de la compagnie des Indes orientales, sa mère est une descendante de James Dodson, qui établit une table d'antilogarithmes. À cause des révoltes, le colonel envoie sa famille en Angleterre alors que Auguste a sept mois.
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
PrésuppositionEn linguistique la présupposition (ou présupposé) est un type d'inférence pragmatique, c'est-à-dire une information qu'on peut tirer d'un énoncé. Une personne présuppose une information lorsqu'elle tient une information pour acquise. Par exemple, dans la phrase "Mon amie a arrêté de fumer", on présuppose que l'amie a fumé par le passé; cette information est tenue pour acquise et n'a pas besoin d'être explicitée.
Logic in Islamic philosophyEarly Islamic law placed importance on formulating standards of argument, which gave rise to a "novel approach to logic" (منطق manṭiq "speech, eloquence") in Kalam (Islamic scholasticism). However, with the rise of the Mu'tazili philosophers, who highly valued Aristotle's Organon, this approach was displaced by the older ideas from Hellenistic philosophy. The works of al-Farabi, Avicenna, al-Ghazali and other Muslim logicians who often criticized and corrected Aristotelian logic and introduced their own forms of logic, also played a central role in the subsequent development of European logic during the Renaissance.
Mill's MethodsMill's Methods are five methods of induction described by philosopher John Stuart Mill in his 1843 book A System of Logic. They are intended to illuminate issues of causation. If two or more instances of the phenomenon under investigation have only one circumstance in common, the circumstance in which alone all the instances agree, is the cause (or effect) of the given phenomenon. For a property to be a necessary condition it must always be present if the effect is present.