Summary
In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev. Let W k,p(Rn) denote the Sobolev space consisting of all real-valued functions on Rn whose first k weak derivatives are functions in Lp. Here k is a non-negative integer and 1 ≤ p < ∞. The first part of the Sobolev embedding theorem states that if k > l, p < n and 1 ≤ p < q < ∞ are two real numbers such that then and the embedding is continuous. In the special case of k = 1 and l = 0, Sobolev embedding gives where p∗ is the Sobolev conjugate of p, given by This special case of the Sobolev embedding is a direct consequence of the Gagliardo–Nirenberg–Sobolev inequality. The result should be interpreted as saying that if a function in has one derivative in , then itself has improved local behavior, meaning that it belongs to the space where . (Note that , so that .) Thus, any local singularities in must be more mild than for a typical function in . The second part of the Sobolev embedding theorem applies to embeddings in Hölder spaces C r,α(Rn). If n < pk and with α ∈ (0, 1) then one has the embedding This part of the Sobolev embedding is a direct consequence of Morrey's inequality. Intuitively, this inclusion expresses the fact that the existence of sufficiently many weak derivatives implies some continuity of the classical derivatives. If then for every . In particular, as long as , the embedding criterion will hold with and some positive value of . That is, for a function on , if has derivatives in and , then will be continuous (and actually Hölder continuous with some positive exponent ). The Sobolev embedding theorem holds for Sobolev spaces W k,p(M) on other suitable domains M.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
MATH-515: Topics in calculus of variations
Introduction to classical Calculus of Variations and a selection of modern techniques.
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
Show more
Related lectures (32)
Integration by Parts in Sobolev Spaces
Explores integration by parts in Sobolev spaces and the Poincaré inequality in W01,pW^{1,p}_0 with applications in PDEs.
Embedding Theorems in Sobolev Spaces
Explores embedding theorems in Sobolev spaces, including continuous and compact embedding, weak convergence, and Poincaré inequality.
Analysis IV: Le Spaces
Introduces Le spaces, measurable functions, Holder inequality, and LP space properties.
Show more
Related publications (33)

Power variations in fractional Sobolev spaces for a class of parabolic stochastic PDEs

Robert Dalang, Carsten Hao Ye Chong

We consider a class of parabolic stochastic PDEs on bounded domains D c Rd that includes the stochastic heat equation but with a fractional power gamma of the Laplacian. Viewing the solution as a process with values in a scale of fractional Sobolev spaces ...
INT STATISTICAL INST2023

Stability of Image-Reconstruction Algorithms

Michaël Unser, Sebastian Jonas Neumayer, Pol del Aguila Pla

Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( ℓ2 and ℓ1 regulariz ...
2023

Energy Bounds For A Fourth-Order Equation In Low Dimensions Related To Wave Maps

Tobias Johannes Schmid

For compact, isometrically embedded Riemannian manifolds N -> R-L, we introduce a fourth-order version of the wave maps equation. By energy estimates, we prove an a priori estimate for smooth local solutions in the energy subcritical dimension n = 1, 2. Th ...
AMER MATHEMATICAL SOC2022
Show more
Related concepts (2)
Sobolev space
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
Compact operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of (subsets with compact closure in ). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces. Any bounded operator that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting.