**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Sobolev space

Summary

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes from the fact that weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense.
Motivation
In this section and throughout the article \Omega is an open subset of \R^n

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (5)

Related concepts (35)

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be

Laplace operator

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols

Vector space

In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scal

Related courses (10)

Related publications (49)

MATH-305: Introduction to partial differential equations

This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.

ME-372: Finite element method

L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à appliquer cette méthode à des cas simples et à l'exploiter pour résoudre les problèmes de la pratique.

MATH-502: Distribution and interpolation spaces

The aim of this course is to provide a solid foundation of theory of distributions, Sobolev spaces and an introduction to the more general theory of interpolation spaces.

Loading

Loading

Loading

Related units (4)

Related lectures (19)

In this thesis, we study the stochastic heat equation (SHE) on bounded domains and on the whole Euclidean space $\R^d.$ We confirm the intuition that as the bounded domain increases to the whole space, both solutions become arbitrarily close to one another. Both vanishing Dirichlet and Neumann boundary conditions are considered.We first study the nonlinear SHE in any space dimension with multiplicative correlated noise and bounded initial data. We prove that the solutions to SHE on an increasing sequence of domains converge exponentially fast to the solution to SHE on $\R^d.$ Uniform convergence on compact set is obtained for all $p$-moments. The conditions that need to be imposed on the noise are the same as those required to ensure existence of a random field solution. A Gronwall-type iteration argument is used together with uniform bounds on the solutions, which are surprisingly valid for the entire sequence of increasing domains.We then study SHE in space dimension $d\ge 2$ with additive white noise and bounded initial data. Even though both solutions need to be considered as distributions, their difference is proved to be smooth. If fact, the order of smoothness depends only on the regularity of the boundary of the increasing sequence of domains. We prove that the Fourier transform, in the sense of distributions, of the solution to SHE on $\R^d$ do not have any locally mean-square integrable representative. Therefore, convergence is studied in local versions of Sobolev spaces. Again, exponential rate is obtained.Finally, we study the Anderson model for SHE with correlated noise and initial data given by a measure. We obtain a special expression for the second moment of the difference of the solution on $\R^d$ with that on a bounded domain. The contribution of the initial condition is made explicit. For example, exponentially fast convergence on compact sets is obtained for any initial condition with polynomial growth. More interestingly, from a given convergence rate, we can decide whether some initial data is admissible.

We prove that the multiplier algebra of the Drury-Arveson Hardy space H-n(2) on the unit ball in C-n has no corona in its maximal ideal space, thus generalizing the corona theorem of L. Carleson to higher dimensions. This result is obtained as a corollary of the Toeplitz corona theorem and a new Banach space result: the Besov-Sobolev space B-p(sigma) has the "baby corona property" for all sigma >= 0 and 1 < p < infinity. In addition we obtain infinite generator and semi-infinite matrix versions of these theorems.

2011Using arguments developed by De Giorgi in the 1950's, it is possible to prove the regularity of the solutions to a vast class of variational problems in the Euclidean space. The main goal of the present thesis is to extend these results to the more abstract context of metric spaces with a measure. In particular, working in the axiomatic framework of Gol'dshtein – Troyanov, we establish both the interior and the boundary regularity of quasi-minimizers of the p-Dirichlet energy. Our proof works for quite general domains, assuming some natural hypotheses on the (axiomatic) D-structure. Furthermore, we prove analogous results for extremal functions lying in the class of Sobolev functions in the sense of Hajłasz – Koskela, i.e. functions characterized by the single condition that a Poincaré inequality be satisfied. Our strategy to prove these regularity results is first to show that, in a very general setting, the (Hölder) continuity of a function is a consequence of three specific technical hypotheses. This part of the argument is the essence of the De Giorgi method. Then, we verify that for a function u which is a quasi-minimizer in an axiomatic Sobolev space or an extremal Sobolev function in the sense of Hajłasz – Koskela, these technical hypotheses are indeed satisfied and u is thus (Hölder) continuous. In addition to that, we establish the Harnack's inequality for these extremal functions, and we show that the Dirichlet semi-norm of a piecewise-extremal function is equivalent to the sum of the Dirichlet semi-norms of its components.