In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes from the fact that weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense.
In this section and throughout the article is an open subset of
There are many criteria for smoothness of mathematical functions. The most basic criterion may be that of continuity. A stronger notion of smoothness is that of differentiability (because functions that are differentiable are also continuous) and a yet stronger notion of smoothness is that the derivative also be continuous (these functions are said to be of class — see Differentiability classes). Differentiable functions are important in many areas, and in particular for differential equations. In the twentieth century, however, it was observed that the space (or , etc.) was not exactly the right space to study solutions of differential equations. The Sobolev spaces are the modern replacement for these spaces in which to look for solutions of partial differential equations.
Quantities or properties of the underlying model of the differential equation are usually expressed in terms of integral norms. A typical example is measuring the energy of a temperature or velocity distribution by an -norm. It is therefore important to develop a tool for differentiating Lebesgue space functions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space. Vector space#Function spaces Let be a vector space over a field and let be any set.
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form.
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...
Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( ℓ2 and ℓ1 regulariz ...
. We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W1,1 solutions are necessarily W 1,2 Nash and Schauder applicable. We answer this question positively for a suitable clas ...