Umbral calculusIn mathematics before the 1970s, the term umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to "prove" them. These techniques were introduced by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing.
Gerolamo CardanoGerolamo Cardano (dʒeˈrɔːlamo karˈdaːno; also Girolamo or Geronimo; Jérôme Cardan; Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, astronomer, philosopher, writer, and gambler. He became one of the most influential mathematicians of the Renaissance and one of the key figures in the foundation of probability; he introduced the binomial coefficients and the binomial theorem in the Western world.
Binomial typeIn mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by non-negative integers in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities Many such sequences exist. The set of all such sequences forms a Lie group under the operation of umbral composition, explained below. Every sequence of binomial type may be expressed in terms of the Bell polynomials. Every sequence of binomial type is a Sheffer sequence (but most Sheffer sequences are not of binomial type).
Pascal's ruleIn mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k, where is a binomial coefficient; one interpretation of the coefficient of the xk term in the expansion of (1 + x)n. There is no restriction on the relative sizes of n and k, since, if n < k the value of the binomial coefficient is zero and the identity remains valid. Pascal's rule can also be viewed as a statement that the formula solves the linear two-dimensional difference equation over the natural numbers.
Faulhaber's formulaIn mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a polynomial in n. In modern notation, Faulhaber's formula is Here, is the binomial coefficient "p + 1 choose k", and the Bj are the Bernoulli numbers with the convention that . Faulhaber's formula concerns expressing the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n.
Product (mathematics)In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors. For example, 21 is the product of 3 and 7 (the result of multiplication), and is the product of and (indicating that the two factors should be multiplied together). When one factor is an integer, the product is called a multiple. The order in which real or complex numbers are multiplied has no bearing on the product; this is known as the commutative law of multiplication.
Enumerative combinatoricsEnumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets Si indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in Sn for each n.
Polynomial expansionIn mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or cancellations of terms may also be applied.
Binomial seriesIn mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the Taylor series for the function centered at , where and . Explicitly, where the power series on the right-hand side of () is expressed in terms of the (generalized) binomial coefficients If α is a nonnegative integer n, then the (n + 2)th term and all later terms in the series are 0, since each contains a factor (n − n); thus in this case the series is finite and gives the algebraic binomial formula.
Multinomial theoremIn mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials. For any positive integer m and any non-negative integer n, the multinomial formula describes how a sum with m terms expands when raised to an arbitrary power n: where is a multinomial coefficient. The sum is taken over all combinations of nonnegative integer indices k_1 through k_m such that the sum of all k_i is n.