Concept

Dualizing sheaf

In algebraic geometry, the dualizing sheaf on a proper scheme X of dimension n over a field k is a coherent sheaf together with a linear functional that induces a natural isomorphism of vector spaces for each coherent sheaf F on X (the superscript * refers to a dual vector space). The linear functional is called a trace morphism. A pair , if it is exists, is unique up to a natural isomorphism. In fact, in the language of , is an object representing the contravariant functor from the category of coherent sheaves on X to the category of k-vector spaces. For a normal projective variety X, the dualizing sheaf exists and it is in fact the canonical sheaf: where is a canonical divisor. More generally, the dualizing sheaf exists for any projective scheme. There is the following variant of Serre's duality theorem: for a projective scheme X of pure dimension n and a Cohen–Macaulay sheaf F on X such that is of pure dimension n, there is a natural isomorphism In particular, if X itself is a Cohen–Macaulay scheme, then the above duality holds for any locally free sheaf. Given a proper finitely presented morphism of schemes , defines the relative dualizing sheaf or as the sheaf such that for each open subset and a quasi-coherent sheaf on , there is a canonical isomorphism which is functorial in and commutes with open restrictions. Example: If is a local complete intersection morphism between schemes of finite type over a field, then (by definition) each point of has an open neighborhood and a factorization , a regular embedding of codimension followed by a smooth morphism of relative dimension . Then where is the sheaf of relative Kähler differentials and is the normal bundle to . For a smooth curve C, its dualizing sheaf can be given by the canonical sheaf . For a nodal curve C with a node p, we may consider the normalization with two points x, y identified. Let be the sheaf of rational 1-forms on with possible simple poles at x and y, and let be the subsheaf consisting of rational 1-forms with the sum of residues at x and y equal to zero.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-473: Complex manifolds
The goal of this course is to help students learn the basic theory of complex manifolds and Hodge theory.
MATH-535: Algebraic geometry III - selected topics
This course is an introduction to the theory of algebraic curves and surfaces. An important aim of the course is to develop geometric intuition while using the language of schemes developed in the ba
Related lectures (4)
Hodge Duality and Covariant Derivatives
Introduces Hodge duality, covariant derivatives, and key concepts in differential geometry.
Show more
Related publications (1)

Geometric stabilisation via $p$-adic integration

Dimitri Stelio Wyss, Michael Gröchenig

In this article we give a new proof of Ngô's Geometric Stabilisation Theorem, which implies the Fundamental Lemma. This is a statement which relates the cohomology of Hitchin fibres for a quasi-split reductive group scheme G to the cohomology of Hitchin fi ...
2018
Related concepts (2)
Duality (mathematics)
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
Glossary of algebraic geometry
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.