Concept

Dualizing sheaf

In algebraic geometry, the dualizing sheaf on a proper scheme X of dimension n over a field k is a coherent sheaf together with a linear functional that induces a natural isomorphism of vector spaces for each coherent sheaf F on X (the superscript * refers to a dual vector space). The linear functional is called a trace morphism. A pair , if it is exists, is unique up to a natural isomorphism. In fact, in the language of , is an object representing the contravariant functor from the category of coherent sheaves on X to the category of k-vector spaces. For a normal projective variety X, the dualizing sheaf exists and it is in fact the canonical sheaf: where is a canonical divisor. More generally, the dualizing sheaf exists for any projective scheme. There is the following variant of Serre's duality theorem: for a projective scheme X of pure dimension n and a Cohen–Macaulay sheaf F on X such that is of pure dimension n, there is a natural isomorphism In particular, if X itself is a Cohen–Macaulay scheme, then the above duality holds for any locally free sheaf. Given a proper finitely presented morphism of schemes , defines the relative dualizing sheaf or as the sheaf such that for each open subset and a quasi-coherent sheaf on , there is a canonical isomorphism which is functorial in and commutes with open restrictions. Example: If is a local complete intersection morphism between schemes of finite type over a field, then (by definition) each point of has an open neighborhood and a factorization , a regular embedding of codimension followed by a smooth morphism of relative dimension . Then where is the sheaf of relative Kähler differentials and is the normal bundle to . For a smooth curve C, its dualizing sheaf can be given by the canonical sheaf . For a nodal curve C with a node p, we may consider the normalization with two points x, y identified. Let be the sheaf of rational 1-forms on with possible simple poles at x and y, and let be the subsheaf consisting of rational 1-forms with the sum of residues at x and y equal to zero.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.