En mathématiques et plus particulièrement en analyse et en analyse complexe, la dérivée logarithmique d'une fonction f dérivable ne s'annulant pas est la fonction : où f est la dérivée de f. Lorsque la fonction f est à valeurs réelles strictement positives, la dérivée logarithmique coïncide avec la dérivée de la composée de f par la fonction logarithme ln, comme le montre la formule de la dérivée d'une composée de fonctions. Les relations qui suivent découlent de la définition (mais on peut également les obtenir en utilisant les propriétés du logarithme) : partant de la formule classique de Leibniz : il vient qui exprime que la « dérivée logarithmique d'un produit est égale à la somme des dérivées logarithmiques des facteurs ». De même, partant de la formule de dérivée d'un quotient : on obtient : et partant de , on obtient L'idée de la dérivée logarithmique est assez proche de celle de la méthode des facteurs intégrants, pour les équations différentielles du premier ordre. En termes d'opérateur, on écrit l'opérateur de différentiation et soit M l'opérateur de multiplication par une fonction G donnée. Alors peut être écrit (d'après la règle de dérivation d'un produit) sous la forme où D + M désigne l'opérateur de multiplication par la dérivée logarithmique de G, c'est-à-dire par Souvent, on donne un opérateur tel que et il faut résoudre l'équation d'inconnue h, f étant donnée. Cela amène à résoudre qui a pour solution où est une primitive quelconque de f. La définition peut être étendue à d'autres fonctions et par exemple si f est une fonction méromorphe, alors la définition a un sens en tous les nombres complexes qui ne sont ni des zéros de f, ni des pôles de f. De plus en un zéro ou un pôle, la dérivée logarithmique s'analyse à partir du cas particulier de où n est un entier non nul. Dans ce cas, la dérivée logarithmique est égale à . Et on peut en déduire que de façon générale pour une fonction méromorphe f, toutes les singularités de la dérivée logarithmique de f sont des pôles simples, de résidu n d'un zéro d'ordre n, de résidu -n d'un pôle d'ordre n.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(a): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(f): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (335)
Dérivé logarithmique de Zeta
Explore la dérivée logarithmique de la fonction Zeta en utilisant la factorisation de Hadamard.
Dérivés numériques
Couvre le concept de dérivée numérique et l'approche de différence progressive pour le calcul des dérivés.
Différenciation implicite : les bases
Couvre les bases de la différenciation implicite, en se concentrant sur les techniques et les applications.
Afficher plus
Publications associées (86)

IMPROVED REGULARITY OF SECOND DERIVATIVES FOR SUBHARMONIC FUNCTIONS

Xavier Fernandez-Real Girona, Riccardo Tione

In this note, we prove that if a subharmonic function Delta u >= 0 has pure second derivatives partial derivative(ii)u that are signed measures, then their negative part (partial derivative(ii)u)- belongs to L-1 (in particular, it is not singular). We then ...
Providence2023

Stochastic derivative estimation for max-stable random fields

Erwan Fabrice Koch

We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown-Resnick and Smith fields, are very popula ...
ELSEVIER2022

Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization

Volkan Cevher, Kimon Antonakopoulos, Efstratios Panteleimon Skoulakis, Leello Tadesse Dadi, Ali Kavis

We propose an adaptive variance-reduction method, called AdaSpider, for minimization of L-smooth, non-convex functions with a finite-sum structure. In essence, AdaSpider combines an AdaGrad-inspired [Duchi et al., 2011, McMahan & Streeter, 2010], but a fai ...
2022
Afficher plus
Concepts associés (6)
Differentiation rules
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus. Unless otherwise stated, all functions are functions of real numbers (R) that return real values; although more generally, the formulae below apply wherever they are well defined — including the case of complex numbers (C). For any value of , where , if is the constant function given by , then . Let and . By the definition of the derivative, This shows that the derivative of any constant function is 0.
Quotient rule
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
Logarithmic differentiation
In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself. This usually occurs in cases where the function of interest is composed of a product of a number of parts, so that a logarithmic transformation will turn it into a sum of separate parts (which is much easier to differentiate).
Afficher plus
MOOCs associés (3)
Fonctions Trigonométriques, Logarithmiques et Exponentielles
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Fonctions Trigonométriques, Logarithmiques et Exponentielles
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.