The carbon cycle is that part of the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Other major biogeochemical cycles include the nitrogen cycle and the water cycle. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. The carbon cycle comprises a sequence of events that are key to making Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration (storage) to and release from carbon sinks.
To describe the dynamics of the carbon cycle, a distinction can be made between the fast and slow carbon cycle. The fast carbon cycle is also referred to as the biological carbon cycle. Fast carbon cycles can complete within years, moving substances from atmosphere to biosphere, then back to the atmosphere. Slow or geological cycles (also called deep carbon cycle) can take millions of years to complete, moving substances through the Earth's crust between rocks, soil, ocean and atmosphere.
Human activities have disturbed the fast carbon cycle for many centuries by modifying land use, and moreover with the recent industrial-scale mining of fossil carbon (coal, petroleum, and gas extraction, and cement manufacture) from the geosphere. Carbon dioxide in the atmosphere had increased nearly 52% over pre-industrial levels by 2020, forcing greater atmospheric and Earth surface heating by the Sun. The increased carbon dioxide has also caused a reduction in the ocean's pH value and is fundamentally altering marine chemistry. The majority of fossil carbon has been extracted over just the past half century, and rates continue to rise rapidly, contributing to human-caused climate change.
The carbon cycle was first described by Antoine Lavoisier and Joseph Priestley, and popularised by Humphry Davy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Inland waters are now being recognized are major players of global biogeochemical cycles. They also provide essential ecosystem services such as fresh water and fish, and link continental processes wi
Understanding process and role of biomineralization (minerals formed by living organisms) in context of Earth's evolution,global chemical cycles, climatic changes and remediation.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
The ocean (also known as the sea or the world ocean) is a body of salt water that covers approximately 70.8% of the Earth and contains 97% of Earth's water. The term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. Distinct names are used to identify five different areas of the ocean: Pacific (the largest), Atlantic, Indian, Southern, and Arctic (the smallest). Seawater covers approximately of the planet.
Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. It is an integrated field of chemistry and geology.
Phytoplankton (ˌfaɪtoʊˈplæŋktən) are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν (phyton), meaning 'plant', and πλαγκτός (planktos), meaning 'wanderer' or 'drifter'. Phytoplankton obtain their energy through photosynthesis, as do trees and other plants on land. This means phytoplankton must have light from the sun, so they live in the well-lit surface layers (euphotic zone) of oceans and lakes.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Electron transfer reactions are central to the transformation of energy in the environment and play an important role in biogeochemical element cycling. In soils, one of the main drivers of carbon cycling is the activity of organisms that utilize the energ ...
In a context of political commitment targeting net zero in 2050, controlling carbon flows is an essential operational imperative. The LOCUS methodology (Low carbon urban strategy) makes it possible to establish an exhaustive vision of carbon flows at neigh ...
Wrocław University of Science and Technology Publishing House2024
Equivalent black carbon (eBC) mass concentration was measured with a commercial aethalometer (model AE33, Magee Scientific, Berkeley, USA). Measurements were performed onboard of the Swedish icebreaker (I/B) Oden from August to September 2018 as part of th ...