Related people (32)
John Richard Thome
John R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.
David Andrew Barry
Research InterestsSubsurface hydrology, constructed wetlands, ecological engineering, in particular contaminant transport and remediation of soil and groundwater; more generally, models of hydrological and vadose zone processes; application of mathematical methods to hydrological processes; coastal zone sediment transport, aquifer-coastal ocean interactions; hydrodynamics and modelling of lakes.
Philippe Gillet
Philippe GILLET completed his undergraduate studies in Earth Science at Ecole normale supérieure de la rue d’Ulm (Paris). In 1983 he obtained a PhD in Geophysics at Université de Paris VII and joined Université de Rennes I as an assistant. Having obtained a State Doctorate in 1988, he became a Professor at this same university, which he left in 1992 to join Ecole normale supérieure de Lyon. The first part of his research career was devoted to the formation of mountain ranges – particularly of the Alps. In parallel, he developed experimental techniques (diamond anvil cells) to recreate the pressure and temperature prevailing deep inside planets in the lab. These experiments aim at understanding what materials make up the unreachable depths of planets in the solar system. In 1997, Gillet started investigating extraterrestrial matter. He was involved in describing meteorites coming from Mars, the moon or planets which have disappeared today and explaining how these were expelled from their original plant by enormous shocks which propelled them to Earth. He also participated in the NASA Stardust program and contributed to identify comet grains collected from the tail of Comet Wild 2 and brought back to Earth. These grains represent the initial minerals in our solar system and were formed over 4.5 billion years ago. He has also worked on the following subjects: • Interactions between bacteria and minerals. • Solid to glass transition under pressure. • Experimental techniques: laser-heated diamond anvil cell, Raman spectroscopy, X-ray diffraction with synchrotron facilities, electron microscopy. Philippe Gillet is also active in science and education management. He was the Director of the CNRS Institut National des Sciences de l’Univers (France), the President of the French synchrotron facility SOLEIL and of the French National Research Agency (2007), and the Director of Ecole normale supérieure de Lyon. Before joining EPFL he was the Chief of Staff of the French Minister of Higher Education and Research. Selected publications: Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154. Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359–374. Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716. Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074. Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509. Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons. Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.