In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle.
By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.e., locally free sheaves of finite rank) on X.
Specifically, one requires that the trivialization maps
are biholomorphic maps. This is equivalent to requiring that the transition functions
are holomorphic maps. The holomorphic structure on the tangent bundle of a complex manifold is guaranteed by the remark that the derivative (in the appropriate sense) of a vector-valued holomorphic function is itself holomorphic.
Let E be a holomorphic vector bundle. A local section s : U → EU is said to be holomorphic if, in a neighborhood of each point of U, it is holomorphic in some (equivalently any) trivialization.
This condition is local, meaning that holomorphic sections form a sheaf on X. This sheaf is sometimes denoted , or abusively by E. Such a sheaf is always locally free of the same rank as the rank of the vector bundle. If E is the trivial line bundle then this sheaf coincides with the structure sheaf of the complex manifold X.
There are line bundles over whose global sections correspond to homogeneous polynomials of degree (for a positive integer). In particular, corresponds to the trivial line bundle. If we take the covering then we can find charts defined byWe can construct transition functions defined byNow, if we consider the trivial bundle we can form induced transition functions . If we use the coordinate on the fiber, then we can form transition functionsfor any integer . Each of these are associated with a line bundle .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after . A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry. Suppose is a complex manifold of complex dimension and let denote the ring of holomorphic functions on We call a Stein manifold if the following conditions hold: is holomorphically convex, i.
In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group For integral schemes the Picard group is isomorphic to the class group of Cartier divisors.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
We prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic p>0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with La ...
Given a topological modular functor V in the sense of Walker, we construct vector bundles Z (lambda) over bar, over (M) over bar (g,n) whose Chern characters define semi-simple cohomological field theories. This construction depends on a determinati ...
The Chow-Mumford (CM) line bundle is a functorial line bundle on the base of any family of klt Fano varieties. It is conjectured that it yields a polarization on the moduli space of K-poly-stable klt Fano varieties. Proving ampleness of the CM line bundle ...