In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds.
Alternatively, the Picard group can be defined as the sheaf cohomology group
For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group.
The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces.
The Picard group of the spectrum of a Dedekind domain is its ideal class group.
The invertible sheaves on projective space Pn(k) for k a field, are the twisting sheaves so the Picard group of Pn(k) is isomorphic to Z.
The Picard group of the affine line with two origins over k is isomorphic to Z.
The Picard group of the -dimensional complex affine space: , indeed the exponential sequence yields the following long exact sequence in cohomology
and since we have because is contractible, then and we can apply the Dolbeault isomorphism to calculate by the Dolbeault-Grothendieck lemma.
The construction of a scheme structure on (representable functor version of) the Picard group, the Picard scheme, is an important step in algebraic geometry, in particular in the duality theory of abelian varieties. It was constructed by , and also described by and .
In the cases of most importance to classical algebraic geometry, for a non-singular complete variety V over a field of characteristic zero, the connected component of the identity in the Picard scheme is an abelian variety called the Picard variety and denoted Pic0(V). The dual of the Picard variety is the Albanese variety, and in the particular case where V is a curve, the Picard variety is naturally isomorphic to the Jacobian variety of V.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
In mathematics, the Albanese variety , named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. The Albanese variety is the abelian variety generated by a variety taking a given point of to the identity of . In other words, there is a morphism from the variety to its Albanese variety , such that any morphism from to an abelian variety (taking the given point to the identity) factors uniquely through .
In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times that of s for any f in O(U) and s in F(U). The standard case is when X is a scheme and O its structure sheaf. If O is the constant sheaf , then a sheaf of O-modules is the same as a sheaf of abelian groups (i.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
The goal of this course is to treat selected topics in complex analysis. We will mostly focus on holomorphic functions in one variable. At the end we will also discuss holomorphic functions in several
This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore
Explores the Hopf formula in cohomology groups, emphasizing the 4-term exact sequence and its implications.
, , , ,
The pullback scheme is implemented in the global gyrokinetic particle-in-cell code ORB5 (Jolliet et al., 2007[1]) to mitigate the cancellation problem in electromagnetic simulations. The equations and the discretisation used by the code are described. Nume ...
The excitation of toroidicity-induced Alfven eigenmodes (TAEs) using prescribed external electromagnetic perturbations (hereafter 'antenna') acting on a confined toroidal plasma, as well as its nonlinear couplings to other modes in the system, is studied. ...
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterization of ordinary abelian varieties over k: a smooth projective variety X is birational to an ordinary abelian variety if and only if kappa(S)(X) = 0 and b(1)(X ...