The Cryogenian (from krýos, meaning "cold" and γένεσις, romanized: , meaning "birth") is a geologic period that lasted from . It forms the second geologic period of the Neoproterozoic Era, preceded by the Tonian Period and followed by the Ediacaran.
The Cryogenian was a time of drastic biosphere changes. After the previous Boring Billion years of stability, at the beginning of Cryogenian the severe Sturtian glaciation began, freezing the entire Earth in a planetary state known as a Snowball Earth. After 70 million years it ended, but was quickly followed by the Marinoan glaciation, which was also a global event. These events are the subject of much scientific controversy specifically over whether these glaciations covered the entire planet or a band of open sea survived near the equator (termed "slushball Earth").
The Cryogenian Period was ratified in 1990 by the International Commission on Stratigraphy. In contrast to most other time periods, the beginning of the Cryogenian is not linked to a globally observable and documented event. Instead, the base of the period is defined by a fixed rock age, that was originally set at 850 million years, but changed in 2015 to 720 million years.
This could cause ambiguity because estimates of rock ages are variable and are subject to laboratory error. For instance, the time scale of the Cambrian Period is not reckoned by rock younger than a given age ( million years), but by the appearance of the worldwide Treptichnus pedum diagnostic trace fossil assemblages. This means that rocks can be recognized as Cambrian in the field, without extensive lab testing.
Currently, there is no consensus on what global event is a suitable candidate to mark the start of the Cryogenian Period, but a global glaciation would be a likely candidate.
The name of the geologic period refers to the very cold global climate of the Cryogenian.
Characteristic glacial deposits indicate that Earth suffered the most severe ice ages in its history during this period (Sturtian and Marinoan).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Cambrian explosion, Cambrian radiation, Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately in the Cambrian Period of early Paleozoic when there was a sudden radiation of complex life and practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.
The Snowball Earth is a geohistorical hypothesis that proposes during one or more of Earth's icehouse climates, the planet's surface became entirely or nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically referred period of such global glaciation is believed to have occurred sometime before 650 mya during the Cryogenian period. Proponents of the hypothesis argue that it best explains sedimentary deposits that are generally believed to be of glacial origin at tropical palaeolatitudes and other enigmatic features in the geological record.
Rodinia (from the Russian родина, rodina, meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago and broke up 750–633 million years ago. were probably the first to recognise a Precambrian supercontinent, which they named 'Pangaea I'. It was renamed 'Rodinia' by who also were the first to produce a reconstruction and propose a temporal framework for the supercontinent. Rodinia formed at c. 1.
Explores viscosity in Newtonian fluids, discussing shear stress, shear strain rate, and compressibility, with examples of shear thickening and shear thinning behaviors.
Explores the theory and applications of helical curves, focusing on circular helices with various parameters.
During past periods of advance, Arctic glaciers and ice sheets overrode soil, sediments, and vegetation and buried significant stores of organic matter (OM); these glaciers are now shrinking rapidly due to climate warming. Little is known about the biogeoc ...
Stable isotope ratios combined with elemental compositions and molecular biomass data provide a powerful tool in Neoproterozoic palaeoenvironmental interpretations. Here, we report the results of an extensive organic and inorganic geochemical study perform ...
Elsevier2014
, , ,
Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. ...