In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geometry are the natural analog of straight lines in Euclidean space. For any pair of distinct non-antipodal points on the sphere, there is a unique great circle passing through both. (Every great circle through any point also passes through its antipodal point, so there are infinitely many great circles through two antipodal points.) The shorter of the two great-circle arcs between two distinct points on the sphere is called the minor arc, and is the shortest surface-path between them. Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the center of the sphere.
A great circle is the largest circle that can be drawn on any given sphere. Any diameter of any great circle coincides with a diameter of the sphere, and therefore every great circle is concentric with the sphere and shares the same radius. Any other circle of the sphere is called a small circle, and is the intersection of the sphere with a plane not passing through its center. Small circles are the spherical-geometry analog of circles in Euclidean space.
Every circle in Euclidean 3-space is a great circle of exactly one sphere.
The disk bounded by a great circle is called a great disk: it is the intersection of a ball and a plane passing through its center.
In higher dimensions, the great circles on the n-sphere are the intersection of the n-sphere with 2-planes that pass through the origin in the Euclidean space Rn + 1.
Great-circle distance
To prove that the minor arc of a great circle is the shortest path connecting two points on the surface of a sphere, one can apply calculus of variations to it.
Consider the class of all regular paths from a point to another point .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spaces. The word line may also refer to a line segment in everyday life that has two points to denote its ends (endpoints). A line can be referred to by two points that lie on it (e.g. ) or by a single letter (e.g. ).
In geometry, a geodesic (ˌdʒiː.əˈdɛsɪk,-oʊ-,-ˈdiːsɪk,_-zɪk) is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line". The noun geodesic and the adjective geodetic come from geodesy, the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry.
In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Parallel lines are the subject of Euclid's parallel postulate.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Covers the simulation of acoustic waves in fluids using the Pressure Acoustics, Frequency Domain interface in COMSOL Multiphysics.
Explores simply connected domains in complex analysis, including holomorphic functions, Cauchy's integral formula, and Taylor series.
Explores differential operators, regular curves, norms, and injective functions, addressing questions on curves' properties, norms, simplicity, and injectivity.
We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-01900880- ...
Seawater intrusion in island aquifers was considered analytically, specifically for annulus segment aquifers (ASAs), i.e., aquifers that (in plan) have the shape of an annulus segment. Based on the Ghijben–Herzberg and hillslope-storage Boussinesq equation ...
The article firstly proves that the constant quality factor (Q) contours for passive circuits, while represented on a 2D Smith chart, form circle arcs on a coaxal circle family. Furthermore, these circle arcs represent semi-circles families in the north he ...