**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Uniformly perfect finitely generated simple left orderable groups

Abstract

We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-01900880-7] are uniformly perfect-each element in the group can be expressed as a product of three commutators of elements in the group. This implies that the group does not admit any homogeneous quasimorphism. Moreover, any non-trivial action of the group on the circle, which lifts to an action on the real line, admits a global fixed point. It follows that any faithful action on the real line without a global fixed point is globally contracting. This answers Question 4 of the third author [A. Navas. Group actions on 1-manifolds: a list of very concrete open questions. Proceedings of the International Congress of Mathematicians, Vol. 2. Eds. B. Sirakov, P. Ney de Souza and M. Viana. World Scientific, Singapore, 2018, pp, 2029-2056], which asks whether such a group exists. This question has also been answered simultaneously and independently, using completely different methods, by Matte Bon and Triestino [Groups of piecewise linear homeomorphisms of flows. Preprint, 2018, arXiv:1811.12256]. To prove our results, we provide a characterization of elements of the group G(rho) which is a useful new tool in the study of these examples.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (4)

Homeomorphism

In the mathematical field of topology, a homeomorphism (, named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the —that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

Group action

In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group acts on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it.

Homeomorphism group

In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups.