Summary
The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous tangent vector field on even-dimensional n-spheres. For the ordinary sphere, or 2‐sphere, if f is a continuous function that assigns a vector in R3 to every point p on a sphere such that f(p) is always tangent to the sphere at p, then there is at least one pole, a point where the field vanishes (a p such that f(p) = 0). The theorem was first proved by Henri Poincaré for the 2-sphere in 1885, and extended to higher even dimensions in 1912 by Luitzen Egbertus Jan Brouwer. The theorem has been expressed colloquially as "you can't comb a hairy ball flat without creating a cowlick" or "you can't comb the hair on a coconut". Every zero of a vector field has a (non-zero) "index", and it can be shown that the sum of all of the indices at all of the zeros must be two, because the Euler characteristic of the 2-sphere is two. Therefore, there must be at least one zero. This is a consequence of the Poincaré–Hopf theorem. In the case of the torus, the Euler characteristic is 0; and it is possible to "comb a hairy doughnut flat". In this regard, it follows that for any compact regular 2-dimensional manifold with non-zero Euler characteristic, any continuous tangent vector field has at least one zero. A common problem in computer graphics is to generate a non-zero vector in R3 that is orthogonal to a given non-zero vector. There is no single continuous function that can do this for all non-zero vector inputs. This is a corollary of the hairy ball theorem. To see this, consider the given vector as the radius of a sphere and note that finding a non-zero vector orthogonal to the given one is equivalent to finding a non-zero vector that is tangent to the surface of that sphere where it touches the radius. However, the hairy ball theorem says there exists no continuous function that can do this for every point on the sphere (equivalently, for every given vector).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.