Résumé
En mathématiques, le théorème de la boule chevelue est un résultat de topologie différentielle. Il s'applique à une sphère supportant en chaque point un vecteur, imaginé comme un cheveu, tangent à la surface. Il affirme que la fonction associant à chaque point de la sphère le vecteur admet au moins un point de discontinuité, ce qui revient à dire que la coiffure contient un épi, ou qu'il y a des cheveux nuls, c'est-à-dire de la calvitie. De manière plus rigoureuse, un champ de vecteurs continu sur une sphère de dimension paire s'annule en au moins un point. Ce théorème est démontré pour la première fois par Luitzen Egbertus Jan Brouwer en 1912. Cette approche généralise des résultats démontrés par le passé comme le théorème de Jordan ou les travaux de Leopold Kronecker sur les fonctions continûment différentiables de la sphère réelle de dimension n – 1 dans un espace vectoriel de dimension n. Ces résultats, qui intuitivement se comprennent aisément, imposent, pour une démonstration rigoureuse, des développements parfois techniques. Un exemple archétypal de résultat de même nature est le théorème du point fixe de Brouwer. Il énonce que toute application continue d'une boule fermée d'un espace vectoriel euclidien de dimension finie dans elle-même admet un point fixe. Le théorème de point fixe de Brouwer peut être déduit du théorème de la boule chevelue. Intuitivement, on peut se représenter une sphère recouverte de cheveux souples et pas frisés, chaque point de la sphère étant la racine d'un cheveu. On considère la projection du cheveu sur le plan tangent à la sphère au point où le cheveu pousse : l'ensemble de ces projections donne une bonne idée d'un champ de vecteurs tangents sur la sphère. On cherche alors à coiffer ces cheveux en les aplatissant sur la surface de la boule, et en évitant les discontinuités : on ne fait pas de raie, on ne permet pas à des cheveux de changer brutalement de direction les uns par rapport aux autres. Le théorème dit qu'il est impossible d'arriver à ce résultat.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.